Lecture 17
Dynamic Code Optimization

I Motivation & Background

I Overview

Ill. Partial Method Compilation
IV. Partial Dead Code Elimination
V. Partial Escape Analysis

VI. Results

“Partial Method Compilation Using Dynamic Profile Information”,
John Whaley, OOPSLA 01

1

Phillip B. Gibbons 15-745: Dynamic Code Optimization

|. Beyond Static Compilation

1) Profile-based Compiler: high-level = binary, static

— Uses (dynamic=runtime) information collected in profiling passes

2) |Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level = binary, dynamic

— interpreter/compiler hybrid
— supports cross-module optimization
— can specialize program using runtime information

« without separate profiling passes

Carnegie Mellon [JI

15-745: Dynamic Code Optimization 2

1) Dynamic Profiling Can Improve Compile-time Optimizations

¢ Understanding common dynamic behaviors may help guide optimizations
— e.g., control flow, data dependences, input values

void foo(int A, int B) {
R~ Whatare typical values of A, B?
Whl:!'e () A + How often is this condition true?

if (A > B)e— |
*p = 0; «—— How oftendoes *p==val[i]?
C =val[i] + D/ |

E += C - B; = Is this loop invariant?

* Profile-based compile-time optimizations
— e.g., speculative scheduling, cache optimizations, code specialization

Carnegie Mellon -

15-745: Dynamic Code Optimization 3

Profile-Based Compile-time Optimization

1. Compile statically 2. Collect profile 3. Re-compile, using profile

el
\\/

(using typical inputs)

runme_v2.exe

« Collecting control-flow profiles is relatively inexpensive
— profiling data dependences, data values, etc., is more costly
* Limitations of this approach?

Carnegie Mellon -

15-745: Dynamic Code Optimization 4

Instrumenting Executable Binaries

1. Compile statically 2. Collect profile
(using typical inputs)
progl.c l' inputl l'
How to perform the
V% P

LTI 7T

N
.
runme.exe
/ (instrumented) |,
v -

binary
instrumentation
tool

execution
profile

runme.exe

1. The compiler could insert it directly
2. A binary instrumentation tool could modify the executable directly
— that way, we don’t need to modify the compiler
— compilers that target the same architecture (e.g., x86) can use the same tool

Carnegie Mellon -

15-745: Dynamic Code Optimization 5

Binary Instrumentation/Optimization Tools

* Unlike typical compilation, the input is a binary (not source code)
* One option: static binary-to-binary rewriting

runme.exe @ runme_modified.exe

* Challenges (with the static approach):
— what about dynamically-linked shared libraries?
— if our goal is optimization, are we likely to make the code faster?
* acompiler already tried its best, and it had source code (we don’t)
— if we are adding instrumentation code, what about time/space overheads?
 instrumented code might be slow & bloated if we aren’t careful
« optimization may be needed just to keep these overheads under control

* Bottom line: the purely static approach to binary rewriting is rarely used

Carnegie Mellon [JI

15-745: Dynamic Code Optimization 6

2) (Pure) Interpreter

¢ One approach to dynamic code execution/analysis is an interpreter
— basic idea: a software loop that grabs, decodes, and emulates each instruction

while (stillExecuting) {
inst = readInst(PC);
instInfo = decodelnst (inst) ;
switch (instInfo.opType) {
case binaryArithmetic: ..
case memoryLoad: ..

}
PC = nextPC(PC,instInfo) ;

}

¢ Advantages:
— also works for dynamic programming languages (e.g., Java)
— easy to change the way we execute code on-the-fly (SW controls everything)
* Disadvantages:
— runtime overhead!

« each dynamic instruction is emulated individually by software

Carnegie Mellon -

15-745: Dynamic Code Optimization 7

]
A Sweet Spot?

* Isthere a way that we can combine:
— the flexibility of an interpreter (analyzing and changing code dynamically); and
— the performance of direct hardware execution?

¢ Key insights:

— increase the granularity of interpretation
=_instructions = chunks of code (e.g., procedures, basic blocks)

— dynamically compile these chunks into directly-executed optimized code
 store these compiled chunks in a software code cache
* jump in and out of these cached chunks when appropriate
« these cached code chunks can be updated!

— invest more time optimizing code chunks that are clearly hot/important
« easy to instrument the code, since already rewriting it
* must balance (dynamic) compilation time with likely benefits

Carnegie Mellon [JI

15-745: Dynamic Code Optimization 8

3) Dynamic Compiler

while (stillExecuting) {
if (!'codeCompiledAlready(PC)) {
compileChunkAndInsertInCache (PC) ;
}
jumpIntoCodeCache (PC) ;
// compiled chunk returns here when finished
PC = getNextPC(..);

e This general approach is widely used:
— Java virtual machines
— dynamic binary instrumentation tools (Valgrind, Pin, Dynamo Rio)
— hardware virtualization

Carnegie Mellon -

15-745: Dynamic Code Optimization 9

Components in a Typical Just-In-Time (JIT) Compiler

Compiled Code
Cache (Chunks)

Input “Interpreter”
Program : Control Loop

a :
Cache Manager
(Ev n Policy)

* Cached chunks of compiled code run at hardware speed
— returns control to “interpreter” loop when chunk is finished
* Dynamic optimizer uses profiling information to guide code optimization
— as code becomes hotter, more aggressive optimization is justified
- replace the old compiled code chunk with a faster version

Carnegie Mellon -

15-745: Dynamic Code Optimization 10

Il. Overview of Dynamic Compilation / Code Optimization

* Interpretation/Compilation/Optimization policy decisions

— Choosing what and how to compile, and how much to optimize
¢ Collecting runtime information

— Instrumentation

— Sampling
* Optimizations exploiting runtime information

— Focus on frequently-executed code paths

Carnegie Mellon -

15-745: Dynamic Code Optimization 11

Dynamic Compilation Policy

* AT = n *T

compile — (executions impmvement)

— IfAT

otal IS N€gative, our compilation policy decision was effective.
* Wecantry to:

— Reduce T, (faster compile times)
— Increase T, ovement (8€NETate better code: but at cost of increasing Te,mpite)
— Focus on large Ng,ecutions (COMpile/optimize hot spots)
¢ 80/20 rule: Pareto Principle

— 20% of the work for 80% of the advantage

Carnegie Mellon -

15-745: Dynamic Code Optimization 12

]
Latency vs. Throughput

* Tradeoff: startup speed vs. execution performance

Startup speed Execution performance
Interpreter Best Poor
‘Quick’ compiler Fair Fair
Optimizing compiler Poor Best

Carnegie Mellon -

15-745: Dynamic Code Optimization 13

Multi-Stage Dynamic Compilation System

interpreted Execution count is the sum of
Stage 1: method invocations & back edges executed
code
when execution count = t1 (e.g. 2000)
compiled

Stage 2: —

when execution count = t2 (e.g. 25,000)

fully optimized
Stage 3: code
Carnegie Mellon [JI
15-745: Dynamic Code Optimization 14

Granularity of Compilation: Per Method?

* Methods can be large, especially after inlining
— Cutting/avoiding inlining too much hurts performance considerably

* Compilation time is proportional to the amount of code being compiled
— Moreover, many optimizations are not linear

* Even “hot” methods typically contain some code that is rarely/never executed

Carnegie Mellon -

15-745: Dynamic Code Optimization 15

]
Example: Spec]VM98 db

void read db(String fn) {
int n = 0, act = 0; int b; byte buffer[] = null;
try {
FileInputStream sif = new FileInputStream(fn);
n = sif.getContentLength() ;
buffer = new byte[n];
Hot while ((b = sif.read(buffer, act, n-act))>0) {
—> act = act + b;
loop }
sif.close();
if (act '= n) {
/* lots of error handling code, rare */
}
} catch (IOException ioe) {
/* lots of error handling code, rare */
}
Carnegie Mellon -

15-745: Dynamic Code Optimization 16

Example: SpecJVM98 db

void read _db(String fn) {
int n = 0, act = 0; int b; byte buffer[] = null;
try {
FileInputStream sif = new FileInputStream(fn);
n = sif.getContentLength() ;
buffer = new byte[n];
while ((b = sif.read(buffer, act, n-act))>0) {
act = act + b;
}_ Lots of
sif.close();
if (act '= n) { rare code!
/* lots of error handling code, rare */4—|
}
} catch (IOException ioe) {
/* lots of error handling code, rare */

Carnegie Mellon -

15-745: Dynamic Code Optimization 17

Optimize hot “regions”, not methods

interpreted
Optimize only the most frequently executed Stage 1: d
segments within a method Geels
— Simple technique:
« Track execution counts of basic blocks
in Stages 1 & 2
« Any basic block executing in Stage 2 compiled
is considered to be not rare Stage 2: —

Beneficial secondary effect of improving
optimization opportunities on the common paths

fully optimized

No need to profile any basic block executing
Stage 3: code

in Stage 3

— Already fully optimized

Carnegie Mellon [JI

15-745: Dynamic Code Optimization 18

% of basic blocks compiled

% of Basic Blocks in Methods that are Executed > Threshold Times
(hence would get compiled under per-method strategy)

100.00%
—e— L pack
—&— JavaC UP
80.00% —a— JavalLEX
> * A = ——SwingSet
60.00% —%—check
\ W —®— com press
40.00% — —+— jpss
\\ \.\ \ —®
20.00% avac
—&—m pegaud
—8—n trt
0.00% ‘ ‘ ‘ ‘ —— jick
1 10 100 500 1000 2000 5000
execution threshold
Carnegie Mellon -
15-745: Dynamic Code Optimization 19

% of basic blocks executed

% of Basic Blocks that are Executed > Threshold Times
(hence get compiled under per-basic-block strategy)

100.00%
—e— Linpack
—&— JavaCUP
80.00% JavalEX
Aw\m ——SwigSet
60.00% X —*—check

k —e— com press
40.00% —+— pss

M —=—db
20.00% . Jwac

’ X : — —&—m pegaud
0.00% : : -

—A— fck

—&—nmn trt
1 10 100 500 1000 2000 5000

execution threshold

Carnegie Mellon [JI

15-745: Dynamic Code Optimization 20

Dynamic Code Transformations

¢ Compiling partial methods
* Partial dead code elimination
* Partial escape analysis

Carnegie Mellon -

15-745: Dynamic Code Optimization 21

IIl. Partial Method Compilation

1. Based on profile data, determine the set of rare blocks
- Use code coverage information from the first compiled version

Goal: Program runs correctly with white blocks

/\ compiled and blue blocks interpreted

What are the challenges?

e « How to transition from white to blue
* How to transition from blue to white

* How to compile/optimize ignoring blue

Carnegie Mellon -

15-745: Dynamic Code Optimization 22

Partial Method Compilation

2. Perform live variable analysis

- Determine the set of live variables at rare block entry points

!

/\ live: x,y,z

Carnegie Mellon -

15-745: Dynamic Code Optimization 23

Partial Method Compilation

3. Redirect the control flow edges that targeted rare blocks,
and remove the rare blocks

to interpreter...

\/ \ Once branch to

interpreter, never
come back to
compiled (no blue-
to-white transitions)

Carnegie Mellon -

15-745: Dynamic Code Optimization 24

Partial Method Compilation

4. Perform compilation normally
- Analyses treat the interpreter transfer point as an unanalyzable method call

!

15-745: Dynamic Code Optimization 25

]
Partial Method Compilation

5. Record a map for each interpreter transfer point

- In code generation, generate a map that specifies the location, in registers
or memory, of each of the live variables

- Maps are typically < 100 bytes

live: x,y,z
x:sp-4
y:rl
z:sp-8
Carnegie Mellon -
15-745: Dynamic Code Optimization 26

IV. Partial Dead Code Elimination

* Move computation that is only live on a rare path into the rare block, saving
computation in the common case

Carnegie Mellon -

15-745: Dynamic Code Optimization 27

Partial Dead Code Example

x =0; if (rare branch 1) {
if (rare branch 1) { x =0;
z =x+y; z =x +y;
} }
if (rare branch 2){ # if (rare branch 2) {
x = 0;

a=x+ z;

Carnegie Mellon -

15-745: Dynamic Code Optimization 28

]
V. Escape Analysis

« Escape analysis finds objects that do not escape a method or a thread
— “Captured” by method:
* can be allocated on the stack or in registers
— “Captured” by thread:
* can avoid synchronization operations
* All Java objects are normally heap allocated, so this is a big win

Carnegie Mellon -

15-745: Dynamic Code Optimization 29

Partial Escape Analysis

* Stack allocate objects that don’t escape in the common blocks
* Eliminate synchronization on objects that don’t escape the common blocks
« Ifabranch to a rare block is taken:

— Copy stack-allocated objects to the heap and update pointers
— Reapply eliminated synchronizations

Carnegie Mellon -

15-745: Dynamic Code Optimization 30

VI. Results: Run Time Improvement

100.00%

90.00%
80.00%

70.00%

60.00%
50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

check compress jess db javac mpegaud mtrt jack SwingSet linpack JLex JCup

First bar: original (Whole method opt)
Second bar: Partial Method Comp (PMC)
Third bar: PMC + opts
I Bottom bar: Execution time if code was compiled/opt. from the beginning

Carnegie Mellon -

15-745: Dynamic Code Optimization 31

Summary: Beyond Static Compilation

1) Profile-based Compiler: high-level = binary, static

— Uses (dynamic=runtime) information collected in profiling passes

2) |Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level = binary, dynamic

— interpreter/compiler hybrid

— supports cross-module optimization

— can specialize program using runtime information
« without separate profiling passes

« for what’s hot on this particular run

Carnegie Mellon -

15-745: Dynamic Code Optimization 32

]
Looking Ahead

* Friday: No class

¢ Monday & Wednesday: “Recent Research on Optimization”
— Student-led discussions, in groups of 2, with 20 minutes/group
— Read 3 papers on a topic, and lead a discussion in class

— See “Discussion Leads” tab of course web page for topics, sign-up sheet,
instructions

e Spring Break
¢ Monday March 14

— Homework #3 due
— Meetings to discuss project proposal ideas

Carnegie Mellon -

15-745: Dynamic Code Optimization 33

