Lecture 15

Instruction Scheduling

I. Hardware Support for Parallel Execution
Il. Constraints on Scheduling
Ill. List Scheduling

[ALSU 10.1-10.3]

1

Phillip B. Gibbons 15745: Instruction Scheduling

Optimization: What’s the Point? (A Quick Review)

Machine-Independent Optimizations:
— e.g., constant propagation & folding, redundancy elimination, dead-code
elimination, etc.
— Goal: eliminate work

Machine-Dependent Optimizations:
— register allocation
* Goal: reduce cost of accessing data
— instruction scheduling
¢ Goal: ???

Carnegie Mellon -

15745: Instruction Scheduling 2

The Goal of Instruction Scheduling

¢ Assume that the remaining instructions are all essential
— (otherwise, earlier passes would have eliminated them)
¢ How can we perform this fixed amount of work in less time?
— Answer: execute the instructions in parallel

Time
a=1+ x; a=1+=x;b=2+y; c=3+z;
=2 +y;
c =3+ z;

Carnegie Mellon -

15745: Instruction Scheduling 3

|. Hardware Support for Parallel Execution

* Three forms of parallelism are found in modern machines:
— Pipelinin
P & . <= |Instruction Scheduling
— Superscalar Processing

— Multicore P — Automatic Parallelization
[future lecture]

Carnegie Mellon -

15745: Instruction Scheduling 4

]
Pipelining

Basic idea:

— break instruction into stages that can be overlapped

Example: simple 5-stage pipeline from early RISC machines

+«—— linstruction —

IF = Instruction Fetch
IF RF EX ME | WB RF = Decode & Register Fetch
EX = Execute on ALU
ME = Memory Access

Time WB = Write Back to Register File
_

Carnegie Mellon -

15745: Instruction Scheduling 5

Pipelining Illustration

AR o =1

nm
Time
_—
Carnegie Mellon -
15745: Instruction Scheduling 6

Pipelining lllustration

Time

* Inagiven cycle, each instruction is in a different stage

Carnegie Mellon -

15745: Instruction Scheduling 7

Beyond 5-Stage Pipelines: Even More Parallelism

* Should we simply make pipelines deeper and deeper?

RF EX ME WB

£
3
F
&
F
2
&

] g
3 0

Fi
& &

3
3 2
g &

g
s
i
&
s
&
&

— registers between pipeline stages have fixed overheads
* hence diminishing returns with more stages (Amdahl’s Law)
— value of pipe stage unclear if < time for integer add
* However, many consumers think “performance = clock rate”
— perceived need for higher clock rates -> deeper pipelines
— e.g., Pentium 4 processor had a 20-stage pipeline [2000-2008]

Carnegie Mellon -

15745: Instruction Scheduling 8

Beyond Pipelining: “Superscalar” Processing

* Basicldea:
— multiple (independent) instructions can proceed simultaneously through the

same pipeline stages

m
*V
’[@}
*V

* Requires additional hardware
— example: “Execute” stage

Pipe Register
Pipe Register

EX

g & g
g g g
& & &

S S
2 2 2

Pipe Register

Abstract Hardware for Hardware for
Representation Scalar Pipeline: 2-way Superscalar:
1ALU 2 ALUs

Carnegie Mellon -

15745: Instruction Scheduling 9

Superscalar Pipeline Illustration

— Original (scalar) pipeline:
IF ME . R
— * Only one instruction in a given pipe

EHERRET stage at a given time

Superscalar pipeline:
* Multiple instructions in the same pipe
stage at the same time

EE
== [=

| o] [m

T <] [><

m

2|5l 5] (5] [5]

H
E
&Y
m
<

HH
e
bl

e
bl

Time

EE

15745: Instruction Scheduling 10

1. Constraints on Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

Carnegie Mellon -

15745: Instruction Scheduling 11

Constraint #1: Hardware Resources

* Processors have finite resources, and there are often constraints on how these
resources can be used.

Examples:
— Finite issue width

— Limited functional units (FUs) per given instruction type
— Limited pipelining within a given functional unit (FU)

15745: Instruction Scheduling 12

Finite Issue Width

Prior to superscalar processing:
— processors only “issued” one instruction per cycle

Even with superscalar processing:
— limit on total # of instructions issued per cycle

Issue Width = infinite Issue Width =4

Time 1
| H HENE EEES B Ep
| + s
1

Carnegie Mellon -

15745: Instruction Scheduling

Limited FUs per Instruction Type

e.g., a 4-way superscalar might only be able to issue up to 2 integer, 1 memory,

and 1 floating-point insts per cycle
More Realistic

Unconstrained Int Mem FP

Original Code
Time 5 SN
T [
4 P2
12 ¥
| Bottleneck
. nteger D Empty Slot

. Memory
- Floating-Point

Carnegie Mellon -

15745: Instruction Scheduling 14

Limited Pipelining within a Functional Unit

e.g., only 1 new floating-point division once every 2 cycles

Schedule with Limited Pipelining

Int Mem FP

Original Code
Time - “7
9
12
] Integer
. Memory
R . Floating-Point] Empty Slot

Carnegie Mellon -

15745: Instruction Scheduling

Constraints on Scheduling

1. Hardware Resources

=P 2. Data Dependences
3. Control Dependences

Carnegie Mellon -

15745: Instruction Scheduling 16

Constraint #2: Data Dependences

« If we read or write a data location “too early”, the program may behave
incorrectly.

(Assume that initially, x = 0.)

???kx =1; ???Kx =1; ???KY = x;
.. $=2;: x,=1;

y = x; 1

Write-after-Read
(“Anti” dependence)

Read-after-Write Write-after-Write
(“True” dependence) (“Output” dependence)

Fundamental Can potentially fix through renaming.
(no simple fix)

Carnegie Mellon -

15745: Instruction Scheduling 17

]
Why Data Dependences are Challenging

x = a[i];

*p = 1;
y = *q,
*r = z;

* which of these instructions can be reordered?

* ambiguous data dependences are very common in practice
— difficult to resolve, despite fancy pointer analysis [next lecture]

Carnegie Mellon -

15745: Instruction Scheduling 18

Given Ambiguous Data Dependences, What To Do?

x = a[i];

*p = 1;
y = *q,
*r = z;

* Conservative approach: don’t reorder instructions
— ensures correct execution
— but may suffer poor performance

* Aggressive approach?
— is there a way to safely reorder instructions?

Carnegie Mellon -

15745: Instruction Scheduling 19

Hardware Limitations: Multi-cycle Execution Latencies

* Simple instructions often “execute” in one cycle
— (as observed by other instructions in the pipeline)
— e.g., integer addition

* More complex instructions may require multiple cycles
— e.g., integer division, square-root
— cache misses!

* These latencies, when combined with data dependencies, can result in non-trivial
critical path lengths through code

Carnegie Mellon -

15745: Instruction Scheduling 20

Constraints on Scheduling

1. Hardware Resources
2. Data Dependences
=P 3. Control Dependences

Carnegie Mellon -

15745: Instruction Scheduling 21

Constraint #3: Control Dependences

¢ What do we do when we reach a conditional branch?
— choose a “frequently-executed” path?
— choose multiple paths?

Carnegie Mellon -

15745: Instruction Scheduling 22

Scheduling Constraints: Summary

¢ Hardware Resources
— finite set of FUs with instruction type, bandwidth, and latency constraints
— cache hierarchy also has many constraints
* Data Dependences
— can’t consume a result before it is produced
— ambiguous dependences create many challenges
* Control Dependences
— impractical to schedule for all possible paths
— choosing an “expected” path may be difficult
* recovery costs can be non-trivial if you are wrong

Carnegie Mellon -

15745: Instruction Scheduling 23

]
Il List Scheduling

* The most common technique for scheduling instructions within a basic block

Basic block scheduling doesn’t need to worry about:
— control flow [future lecture] \/

a+b

»®
]

Does need to worry about:
— data dependences c+d

y
— hardware resources /\

* Even without control flow, the problem is still NP-hard

Carnegie Mellon -

15745: Instruction Scheduling 24

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:
— “An Experimental Evaluation of List Scheduling”, Keith D. Cooper, Philip J. Schielke, and
Devika Subramanian. Rice University, Department of Computer Science Technical Report
98-326, September 1998.

]
List Scheduling: The Basic Idea

* Maintain a list of instructions that are ready to execute
— data dependence constraints would be preserved
— machine resources are available

* Moving cycle-by-cycle through the schedule template:
— choose instructions from the list & schedule them
— update the list for the next cycle

2k
1

Carnegie Mellon -

15745: Instruction Scheduling 26

Inputs: ! Output:
Data Precedence Machine ; Scheduled Code
Graph (DPG) Parameters ! Cycle
4ot FU ' ALUO ALU1 FP
@ 0 0 of FUs: ! .
2INT, 1FP : 10 12 0
(14) (1) | Latencies: -1 | e 1
add =1 cycle, ... : 13 18 6 2
Pipelining: :
@ @ G 1 add/cycle, ... : 110 - 111 3
(o) VAN 4
" (17,110, 111 not shown in DPG)
Carnegie Mellon -
15745: Instruction Scheduling 25
What Makes Life Interesting: Choice
Easy case:

— all ready instructions can be scheduled this cycle

s oo > T+

Interesting case:
— we need to pick a subset of the ready instructions

CHawerom [[]+
~oN

« List scheduling makes choices based upon priorities
— assigning priorities correctly is a key challenge

Carnegie Mellon -

15745: Instruction Scheduling 27

Intuition Behind Priorities

* Intuitively, what should the priority correspond to?
¢ What factors are used to compute it?

— data dependences?

— machine parameters?

(0 (& W #of Fus:
2 INT, 1 FP
0 G Latencies:
add =1 cycle, ...

e @ G Pipelining:
1 add/cycle, ...
O,

Carnegie Mellon -

15745: Instruction Scheduling 28

Representing Data Dependences:
The Data Precedence Graph (DPG)

« Two different kinds of edges:

DPG
Code
10: true “edges”: E @
I1: (read-after-write) e=(I0,11)

I2:
I3:

“anti-edges”: E’ ,
(write-after-read) e’ =(11,12)

e=(12,13)
¢ Why distinguish them?

— do they affect scheduling differently?

RAW: read waits for value to be computed
WAR: write only needs to wait for read to start

¢ What about output dependences?
WAW: earlier write is removed by Dead Code Elimination

15745: Instruction Scheduling 29

Computing Priorities

* Let’s start with just true dependences (i.e. “edges” in DPG)
* Priority = latency-weighted depth in the DPG

l
priority(z) = maz(Vleleaves(DPG)vapaths(x,...,l) Z latency(p;))
pi=x

Carnegie Mellon -
15745: Instruction Scheduling 30

Computing Priorities (Cont.)

* Now let’s also take anti-dependences into account
— i.e. anti-edges in the set E’

latency(x) if z is a leaf
priority(z) = { maz(latency(z) + maz,) g(priority(y)),
max(x’y)eE/(priority(y))) otherwise.

Carnegie Mellon -

15745: Instruction Scheduling 31

List Scheduling Algorithm

cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

while ((|ready-list|+|inflight-list| > 0) && an issue slot is available) {
for op = (all nodes in ready-list in descending priority order) {
if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
if (op has an outgoing anti-edge)
add all targets of op’s anti-edges that are ready to ready-list;
}
}
cycle = cycle + 1;
for op = (all nodes in inflight-list)
if (op finishes at time cycle) {
remove op from inflight-list;
check nodes waiting for op & add to ready-list if all operands available;

Carnegie Mellon -

15745: Instruction Scheduling 32

List Scheduling Example

I0: a 1 Cycle
1: £ =

w1 (0 °
I3: ¢ =9 !
ecien @O® ® :
I5: d = 13 3
I16: = 19;

I7::=f+c e@z@e@ 4
8: =d

;9:g=—1+y @ Z
I10: JMP L1

« 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: Instruction Scheduling 33

I0: a 1

I1: £ =a + x
I2: b =7
I3: ¢ =9
I4: g=f£f +b
I5: d = 13
I6: e = 19;
I7: h=£f + ¢
I8: j=d+y
I9: z = -1
I10: JMP L1

List Scheduling Example

a0

(19

* 2 identical fully-pipelined FUs

* adds take 2 cycles; all other insts take 1 cycle

15745: Instruction Scheduling

Cycle
10 12 0
11 13 1
I5 19 2
14 17 3
18 16 4
-— - 5
110 6

Carnegie Mellon -

What if We Break Ties Differently?

I0: a =1
I1: £ =a + x
I12: b =7
I3: ¢ =9
I4: g=£f +Db
I5: d = 13
I6: e = 19;
I7: h=f£f + ¢
I8: j=d+y
I19: z = -1
I10: JMP L1

* 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: Instruction Scheduling 35

Contrasting the Two Schedules

* Breaking ties arbitrarily may not be the best approach

15745: Instruction Scheduling

10 12
11 13
15 19
14 17
18 16
110

Cycle

o U A W N = O

Cycle
10 12 0
LG5 | 1
&) 2
i N7 | o3
16 4
110 5

Carnegie Mellon -

]
Backward List Scheduling

Modify the algorithm as follows:

— reverse the direction of all edges in the DPG

— schedule the finish times of each operation
« start times must still be used to ensure FU availability

Forward Scheduling Priorities Backward Scheduling Priorities

Carnegie Mellon -

15745: Instruction Scheduling 37

]
Backward List Scheduling

Modify the algorithm as follows:
— reverse the direction of all edges in the DPG
— schedule the finish times of each operation
* start times must still be used to ensure FU availability

Impact of scheduling backwards:

— clusters operations near the end (vs. the beginning)
— may be either better or worse than forward scheduling

Carnegie Mellon -

15745: Instruction Scheduling 38

Backward List Scheduling Example:
Let’s Schedule it Forward First

INT INT MEM Cycle

Dla ST 0
06 | LDic 1
Did | ADDa | — 2
ADDb | ADDC | —- 3
ADDd | ADDI STa 4
cMP | — STh 5
STC 6
STd 7
STe 8
- - - 9
10
11
BR 12

Hardware parameters:
— 2 INT units: ADDs take 2 cycles; others take 1 cycle
— 1 MEM unit: stores (ST) take 4 cycles

Carnegie Mellon -

15745: Instruction Scheduling 39

Now Let’s Try Scheduling Backward

INT INT MEM Cycle
LDla —— 0
ADDI LSL 1
ADDd LDIc === 2
ADDc LDId STe 3
ADDb LDla STd 4
ADDa ---- STc 5
——- - STb 6

- STa 7

- - 8
——- —— 9
CMP - 10
BR o - 11

Hardware parameters:
— 2 INT units: ADDs take 2 cycles; others take 1 cycle
— 1 MEM unit: stores (ST) take 4 cycles

Carnegie Mellon -

15745: Instruction Scheduling 40

10

Contrasting Forward vs. Backward
List Scheduling

Forward Backward

INT INT MEM Cycle INT INT MEM Cycle
Dla ST 0 D | — 0
06| LDIc 1 ADDI | TSL 1
Did | ADDa | — 2 ADDd | IDIc 2
ADDb ADDc - 3 ADDc LDId STe 3
ADDd ADDI STa 4 ADDb LDla STd 4
P | — STh 5 ADDa | — STC 5
STC 6 STh 6
STd 7 STa 7
STe 8 8
10 oY 10
11 BR 1
BR 12

¢ backward scheduling clusters work near the end
* backward is better in this case, but this is not always true

Carnegie Mellon -

15745: Instruction Scheduling 41

Evaluation of List Scheduling

Cooper et al. propose “RBF” scheduling:

— schedule each block M times forward & backward

— break any priority ties randomly

For real programs:

— regular list scheduling works very well

For synthetic blocks:

— RBF wins when “available parallelism” (AP) is ~2.5

— for smaller AP, scheduling is too constrained

— for larger AP, any decision tends to work well

15745: Instruction Scheduling

Carnegie Mellon [JI

42

]
List Scheduling Wrap-Up

* The priority function can be arbitrarily sophisticated
— e.g., filling branch delay slots in early RISC processors

* List scheduling is widely used, and it works fairly well

* Itis limited, however, by basic block boundaries

Carnegie Mellon -

15745: Instruction Scheduling 43

Efficient Instruction Scheduling for a Pipelined Architecture

Phillip B. Gibbons* & Steven S. Muchnick**

[My first publication.
“PLDI” 1986]

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304-1181

Abstract

As part of an effort to develop an optimizing compiler for
a pipelis i a code izati i has
been developed that significantly reduces the number of run-
time pipeline interlocks. In a pass after code generation, the
i uses a dag ion to isti schedule

the instructions in each basic block.

Previous algorithms for reducing pipeline interlocks have
had worst-case runtimes of at least 0(n%). By using a dag
representation which prevents scheduling deadlocks and a
selection method that requires no lookahead, the resulting algo-
rithm izes i ions almost as effectively in practice,
while having an 0 (n?) worst-case runtime.

1. Introduction
The architecture we have studied has many features which

Fortunately, not all pairs of consecutive instructions cause
pipeline hazards. In the architecture under consideration, the
only hazards are register- and memory-based: 1) loading a
register from memory followed by using thar register as a
source, 2) storing to any memory location followed by loading
from any location, and 3) loading from memory followed by
using any register as the target of an arithmetic/logical instruc-
tion or a with address ification. Each of these
pipeline hazards causes some potential implementation of the
architecture to stall or interlock for one pipe cycle.

There are three approaches to reducing the number of pipe-
line i ks incurred in ing a program, distinguished
by the agent and the time when the code is inspected: either
special hardware can do it during execution, or a person or
software can do it before execution. The hardware approach
has been used in the Control Data 6600 [Tho64] and the IBM
360/91 [Tom67], two of the fastest machines of their day.
While reasonably effective, this approach is very expensive
and can only span ively short code

11

|
Looking Ahead
¢ Monday: Pointer Analysis [ALSU 12.4, 12.6-12.7]
* Wednesday: Dynamic Code Optimization
¢ Friday: No class
* Following Monday & Wednesday: “Recent Research on Optimization”

— Student-led discussions, in groups of 2, with 20 minutes/group
— Read 3 papers on a topic, and lead a discussion in class

Carnegie Mellon -

15-745: Instruction Scheduling 45

12

