
1

Carnegie Mellon

Lecture 15
Instruction Scheduling

Phillip B. Gibbons 15745: Instruction Scheduling 1

[ALSU 10.1-10.3]

I. Hardware Support for Parallel ExecutionII. Constraints on SchedulingIII. List Scheduling

Carnegie Mellon

Optimization: What’s the Point? (A Quick Review)
Machine-Independent Optimizations:

– e.g., constant propagation & folding, redundancy elimination, dead-code elimination, etc.
– Goal: eliminate work

Machine-Dependent Optimizations:
– register allocation

• Goal: reduce cost of accessing data
– instruction scheduling

• Goal: ???
– …

15745: Instruction Scheduling 2

Carnegie Mellon

The Goal of Instruction Scheduling
• Assume that the remaining instructions are all essential

– (otherwise, earlier passes would have eliminated them)
• How can we perform this fixed amount of work in less time?

– Answer: execute the instructions in parallel

3

a = 1 + x;
b = 2 + y;
c = 3 + z;

Time
a = 1 + x; b = 2 + y; c = 3 + z;a = 1 + x; b = 2 + y; c = 3 + z;

15745: Instruction Scheduling
Carnegie Mellon

I. Hardware Support for Parallel Execution
• Three forms of parallelism are found in modern machines:

– Pipelining
– Superscalar Processing
– Multicore

4

} Instruction Scheduling
Automatic Parallelization[future lecture]

15745: Instruction Scheduling

2

Carnegie Mellon

Pipelining
Basic idea:

– break instruction into stages that can be overlapped
Example: simple 5-stage pipeline from early RISC machines

5

Time

1 instruction
IF RF EX ME WB IF = Instruction FetchRF = Decode & Register FetchEX = Execute on ALUME = Memory AccessWB = Write Back to Register File

15745: Instruction Scheduling
Carnegie Mellon

Pipelining Illustration

6

IF RF EX ME WB
IF RF EX ME WB

IF RF EX ME WB
IF RF EX ME WB

IF RF EX ME WB

Time

15745: Instruction Scheduling

Carnegie Mellon

Pipelining Illustration

• In a given cycle, each instruction is in a different stage

7

IF RF EX ME WB
IF RF EX ME WB

IF RF EX ME WB
IF RF EX ME WB

IF RF EX ME WB

Time

15745: Instruction Scheduling
Carnegie Mellon

Beyond 5-Stage Pipelines: Even More Parallelism
• Should we simply make pipelines deeper and deeper?

– registers between pipeline stages have fixed overheads
• hence diminishing returns with more stages (Amdahl’s Law)

– value of pipe stage unclear if < time for integer add
• However, many consumers think “performance = clock rate”

– perceived need for higher clock rates -> deeper pipelines
– e.g., Pentium 4 processor had a 20-stage pipeline [2000-2008]

8

IF RF EX ME WB

Pip
e R

egis
ter

Pip
e R

egis
ter

Pip
e R

egis
ter

Pip
e R

egis
ter

15745: Instruction Scheduling

3

Carnegie Mellon

Beyond Pipelining: “Superscalar” Processing
• Basic Idea:

– multiple (independent) instructions can proceed simultaneously through the same pipeline stages
• Requires additional hardware

– example: “Execute” stage

9

EX

Pip
e R

egis
ter

Pip
e R

egis
ter

AbstractRepresentation

Pip
e R

egis
ter

Pip
e R

egis
ter

Hardware forScalar Pipeline:1 ALU
Hardware for2-way Superscalar:2 ALUs

Pip
e R

egis
ter

Pip
e R

egis
ter

r1+r2 r1+r2

r3+r4

15745: Instruction Scheduling
Carnegie Mellon

Superscalar Pipeline Illustration
Original (scalar) pipeline:
• Only one instruction in a given pipe stage at a given time
Superscalar pipeline:
• Multiple instructions in the same pipe stage at the same time

10

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

Time

15745: Instruction Scheduling

Carnegie Mellon

II. Constraints on Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

1115745: Instruction Scheduling
Carnegie Mellon

Constraint #1: Hardware Resources
• Processors have finite resources, and there are often constraints on how these resources can be used.
Examples:

– Finite issue width
– Limited functional units (FUs) per given instruction type
– Limited pipelining within a given functional unit (FU)

1215745: Instruction Scheduling

4

Carnegie Mellon

Finite Issue Width
• Prior to superscalar processing:

– processors only “issued” one instruction per cycle
• Even with superscalar processing:

– limit on total # of instructions issued per cycle

13

Issue Width = infinite Issue Width = 4Time 1
≥ N/4

15745: Instruction Scheduling
Carnegie Mellon

Limited FUs per Instruction Type
• e.g., a 4-way superscalar might only be able to issue up to 2 integer, 1 memory, and 1 floating-point insts per cycle

14

Unconstrained
3

12

Time
Original Code

Integer
Memory
Floating-Point

Int Mem FP
More Realistic

5

Empty Slot
Bottleneck

15745: Instruction Scheduling

Carnegie Mellon

Limited Pipelining within a Functional Unit
• e.g., only 1 new floating-point division once every 2 cycles

15

12

Time
Original Code

Integer
Memory
Floating-Point






Int Mem FP

9

Empty Slot





Schedule with Limited Pipelining




15745: Instruction Scheduling
Carnegie Mellon

Constraints on Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

1615745: Instruction Scheduling

5

Carnegie Mellon

Constraint #2: Data Dependences
• If we read or write a data location “too early”, the program may behave incorrectly.

17

y = x;
x = 1;

x = 1;
x = 2;

x = 1;
y = x;

(Assume that initially, x = 0.)
x = 1;
y = x;

x = 1;
x = 2;

y = x;
x = 1;

Read-after-Write(“True” dependence) Write-after-Write(“Output” dependence) Write-after-Read(“Anti” dependence)

??? ??? ???

Can potentially fix through renaming.

1 1

Fundamental(no simple fix)

15745: Instruction Scheduling
Carnegie Mellon

Why Data Dependences are Challenging

• which of these instructions can be reordered?
• ambiguous data dependences are very common in practice

– difficult to resolve, despite fancy pointer analysis [next lecture]

18

x = a[i];
*p = 1;
y = *q;

*r = z;

15745: Instruction Scheduling

Carnegie Mellon

Given Ambiguous Data Dependences, What To Do?

• Conservative approach: don’t reorder instructions
– ensures correct execution
– but may suffer poor performance

• Aggressive approach?
– is there a way to safely reorder instructions?

19

x = a[i];
*p = 1;
y = *q;
*r = z;

15745: Instruction Scheduling
Carnegie Mellon

Hardware Limitations: Multi-cycle Execution Latencies
• Simple instructions often “execute” in one cycle

– (as observed by other instructions in the pipeline)
– e.g., integer addition

• More complex instructions may require multiple cycles
– e.g., integer division, square-root
– cache misses!

• These latencies, when combined with data dependencies, can result in non-trivial critical path lengths through code

2015745: Instruction Scheduling

6

Carnegie Mellon

Constraints on Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

2115745: Instruction Scheduling
Carnegie Mellon

Constraint #3: Control Dependences

• What do we do when we reach a conditional branch?
– choose a “frequently-executed” path?
– choose multiple paths?

2215745: Instruction Scheduling

Carnegie Mellon

Scheduling Constraints: Summary
• Hardware Resources

– finite set of FUs with instruction type, bandwidth, and latency constraints
– cache hierarchy also has many constraints

• Data Dependences
– can’t consume a result before it is produced
– ambiguous dependences create many challenges

• Control Dependences
– impractical to schedule for all possible paths
– choosing an “expected” path may be difficult

• recovery costs can be non-trivial if you are wrong

2315745: Instruction Scheduling
Carnegie Mellon

III. List Scheduling
• The most common technique for scheduling instructions within a basic block
Basic block scheduling doesn’t need to worry about:

– control flow [future lecture]
Does need to worry about:

– data dependences
– hardware resources

• Even without control flow, the problem is still NP-hard

…y = c + d
x = a + b

2415745: Instruction Scheduling

7

Carnegie Mellon

List Scheduling Algorithm: Inputs and Outputs
Algorithm reproduced from:

– “An Experimental Evaluation of List Scheduling", Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Rice University, Department of Computer Science Technical Report 98-326, September 1998.
Inputs: Output:
Data Precedence Graph (DPG) MachineParameters Scheduled Code

I0

I3
I10
I7

I2
I1
I8

I9

I4
I6
I11
I5

Cycle
0
1
2
3
4

I0 I2
I6I4

I3 I8

I1

I5
I9

of FUs:2 INT, 1 FPLatencies:add = 1 cycle, …Pipelining:1 add/cycle, …

2515745: Instruction Scheduling

ALU 0 ALU 1 FP

(I7, I10, I11 not shown in DPG)
Carnegie Mellon

List Scheduling: The Basic Idea
• Maintain a list of instructions that are ready to execute

– data dependence constraints would be preserved
– machine resources are available

• Moving cycle-by-cycle through the schedule template:
– choose instructions from the list & schedule them
– update the list for the next cycle

I2 I0
Cycle

0
1
2

2615745: Instruction Scheduling

Carnegie Mellon

What Makes Life Interesting: Choice
Easy case:

– all ready instructions can be scheduled this cycle

Interesting case:
– we need to pick a subset of the ready instructions

• List scheduling makes choices based upon priorities
– assigning priorities correctly is a key challenge

I5 I1 I7

I5 I1 I2 I7I0 ???

2715745: Instruction Scheduling
Carnegie Mellon

Intuition Behind Priorities
• Intuitively, what should the priority correspond to?
• What factors are used to compute it?

– data dependences?
– machine parameters?

I0 I2
I6I4

I3 I8

I1

I5
I9

of FUs:2 INT, 1 FPLatencies:add = 1 cycle, …Pipelining:1 add/cycle, …

2815745: Instruction Scheduling

8

Carnegie Mellon

Representing Data Dependences: The Data Precedence Graph (DPG)
• Two different kinds of edges:

• Why distinguish them?
– do they affect scheduling differently?

• What about output dependences?

I0: x = 1;
I1: y = x;
I2: x = 2;
I3: z = x;

I2

I0

I3

I1

DPGCode
true “edges”: E(read-after-write) e = (I0,I1)

e = (I2,I3)

x
x “anti-edges”: E’(write-after-read) e’ = (I1,I2)

2915745: Instruction Scheduling

RAW: read waits for value to be computedWAR: write only needs to wait for read to start

WAW: earlier write is removed by Dead Code Elimination
Carnegie Mellon

Computing Priorities
• Let’s start with just true dependences (i.e. “edges” in DPG)
• Priority = latency-weighted depth in the DPG

I0 I2
I6I4

I3 I8

I1

I5
I9

3015745: Instruction Scheduling

Carnegie Mellon

Computing Priorities (Cont.)
• Now let’s also take anti-dependences into account

– i.e. anti-edges in the set E’

I0 I2
I6I4

I3 I8

I1

I5
I9

e’e’

3115745: Instruction Scheduling
Carnegie Mellon

List Scheduling Algorithm
cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};
while ((|ready-list|+|inflight-list| > 0) && an issue slot is available) {

for op = (all nodes in ready-list in descending priority order) {
if (an FU exists for op to start at cycle) {

remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
if (op has an outgoing anti-edge)

add all targets of op’s anti-edges that are ready to ready-list;
}

}
cycle = cycle + 1;
for op = (all nodes in inflight-list)

if (op finishes at time cycle) {
remove op from inflight-list;
check nodes waiting for op & add to ready-list if all operands available;

}
}

}

3215745: Instruction Scheduling

9

Carnegie Mellon

List Scheduling Example

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1
I8
I5

I6I4 I7
I3

I10
I9

I2
I0

Cycle
0
1
2
3
4
5
6

3315745: Instruction Scheduling
Carnegie Mellon

List Scheduling Example

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1
I8
I5

I6I4 I7
I3

I10
I9

I2
I0

Cycle
0
1
2
3
4
5
6

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---
I10

34

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle
15745: Instruction Scheduling

Carnegie Mellon

What if We Break Ties Differently?

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1
I8
I5

I6I4 I7
I3

I10
I9

I2
I0

Cycle
0
1
2
3
4
5
61

2 3 3 2 3

444 5

6

35

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle
15745: Instruction Scheduling

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I10

Carnegie Mellon

Contrasting the Two Schedules
• Breaking ties arbitrarily may not be the best approach

I1
I8
I5

I6I4 I7
I3

I10
I9

I2
I0

Cycle
0
1
2
3
4
5
6

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---
I10

Cycle
0
1
2
3
4
5

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I101

2 3 3 2 3

444 5

6

3615745: Instruction Scheduling

10

Carnegie Mellon

Backward List Scheduling
Modify the algorithm as follows:

– reverse the direction of all edges in the DPG
– schedule the finish times of each operation

• start times must still be used to ensure FU availability

37

Forward Scheduling Priorities

I1
I8
I5

I6I4 I7
I3

I10
I9

I2
I0

1

2 3 3 2 3

444 5

6

Backward Scheduling Priorities

I1
I8
I5

I6I4 I7
I3

I10
I9

I2
I0

6

1 5 5 1 3

111 3

1

15745: Instruction Scheduling
Carnegie Mellon

Backward List Scheduling
Modify the algorithm as follows:

– reverse the direction of all edges in the DPG
– schedule the finish times of each operation

• start times must still be used to ensure FU availability

Impact of scheduling backwards:
– clusters operations near the end (vs. the beginning)
– may be either better or worse than forward scheduling

3815745: Instruction Scheduling

Carnegie Mellon

Backward List Scheduling Example:Let’s Schedule it Forward First

Hardware parameters:
– 2 INT units: ADDs take 2 cycles; others take 1 cycle
– 1 MEM unit: stores (ST) take 4 cycles

Cycle
0123456789101112

INT INT MEMLDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

BR

LDIa LSL ----LDIb LDIc ----LDId ADDa ----ADDb ADDc ----ADDd ADDI STaCMP ---- STb---- ---- STc---- ---- STd---- ---- STe---- ---- -------- ---- -------- ---- ----BR ---- ----

3915745: Instruction Scheduling
Carnegie Mellon

Now Let’s Try Scheduling Backward

Cycle
01234567891011

INT INT MEMLDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

BR

LDIa ---- ----ADDI LSL ----ADDd LDIc ----ADDc LDId STeADDb LDIa STdADDa ---- STc---- ---- STb---- ---- STa---- ---- -------- ---- ----CMP ---- ----BR ---- ----
8

111

3

71 7 7 7 6

3 3 3 2

1 1

40

Hardware parameters:
– 2 INT units: ADDs take 2 cycles; others take 1 cycle
– 1 MEM unit: stores (ST) take 4 cycles

15745: Instruction Scheduling

11

Carnegie Mellon

Contrasting Forward vs. Backward List Scheduling

• backward scheduling clusters work near the end
• backward is better in this case, but this is not always true

Cycle
01234567891011

INT INT MEM
LDIa ---- ----ADDI LSL ----ADDd LDIc ----ADDc LDId STeADDb LDIa STdADDa ---- STc---- ---- STb---- ---- STa---- ---- -------- ---- ----CMP ---- ----BR ---- ----

Cycle
0123456789101112

INT INT MEM
LDIa LSL ----LDIb LDIc ----LDId ADDa ----ADDb ADDc ----ADDd ADDI STaCMP ---- STb---- ---- STc---- ---- STd---- ---- STe---- ---- -------- ---- -------- ---- ----BR ---- ----

Forward Backward

4115745: Instruction Scheduling
Carnegie Mellon

Evaluation of List Scheduling
Cooper et al. propose “RBF” scheduling:

– schedule each block M times forward & backward
– break any priority ties randomly

For real programs:
– regular list scheduling works very well

For synthetic blocks:
– RBF wins when “available parallelism” (AP) is ~2.5
– for smaller AP, scheduling is too constrained
– for larger AP, any decision tends to work well

4215745: Instruction Scheduling

Carnegie Mellon

List Scheduling Wrap-Up
• The priority function can be arbitrarily sophisticated

– e.g., filling branch delay slots in early RISC processors
• List scheduling is widely used, and it works fairly well
• It is limited, however, by basic block boundaries

4315745: Instruction Scheduling
Carnegie Mellon

4415745: Instruction Scheduling

[My first publication.“PLDI” 1986]

12

Carnegie Mellon

Looking Ahead
• Monday: Pointer Analysis [ALSU 12.4, 12.6-12.7]
• Wednesday: Dynamic Code Optimization
• Friday: No class
• Following Monday & Wednesday: “Recent Research on Optimization”

– Student-led discussions, in groups of 2, with 20 minutes/group
– Read 3 papers on a topic, and lead a discussion in class

4515-745: Instruction Scheduling

