
1

Carnegie Mellon

Lecture 14
Register Allocation & Spilling

I. Introduction
II. Abstraction and the Problem
III. Algorithm
IV. Spilling

Phillip B. Gibbons 15-745: Register Allocation 1

[ALSU 8.8]
Carnegie Mellon

I. Motivation
• Problem

– Allocation of variables (pseudo-registers) to hardware registers in a procedure
• A very important optimization!

– Directly reduces running time
• (memory access  register access)

– Useful for other optimizations
• e.g. CSE assumes old values are kept in registers

15-745: Register Allocation 2

Carnegie Mellon

Goals
• Find an allocation for all pseudo-registers, if possible

• If there are not enough registers in the machine, choose registers to spill to memory

15-745: Register Allocation 3
Carnegie Mellon

Register Assignment Example

15-745: Register Allocation 4

B = …
= A

D =
= B + D

L1: C = …
= A

D =
= C + D

A = …
IF A goto L1

• Find an assignment (without spilling) that uses only 2 registers:
• A and D in one register, B and C in the other

• What does this assignment assume?
• After code segment, no use of A & at most one of B or C is used

A
B C

D

2

Carnegie Mellon

II. An Abstraction for Allocation & Assignment
• Intuitively

– Two pseudo-registers interfere if at some point in the program they cannot both occupy the same register.
• Interference graph: an undirected graph, where

– nodes = pseudo-registers
– there is an edge between two nodes if their corresponding pseudo-registers interfere

• What is not represented
– Extent of the interference between uses of different variables
– Where in the program is the interference

15-745: Register Allocation 5

Interfere manytimes vs. once
E.g., cold pathvs. hot path

Carnegie Mellon

Register Allocation and Coloring
• A graph is n-colorable if:

– every node in the graph can be colored with one of the n colors such that two adjacent nodes do not have the same color.
• Assigning n register (without spilling) = Coloring with n colors

– assign a node to a register (color) such that no two adjacent nodes are assigned same registers(colors)
• Is spilling necessary? = Is the graph n-colorable?
• To determine if a graph is n-colorable is NP-complete, for n>2

– Too expensive
– Heuristics

15-745: Register Allocation 6

Carnegie Mellon

III. Algorithm
Step 1. Build an interference graph

a. refining notion of a node
b. finding the edges

Step 2. Coloring
– use heuristics to try to find an n-coloring

• Success:
– colorable and we have an assignment

• Failure:
– graph not colorable, or
– graph is colorable, but it is too expensive to color

15-745: Register Allocation 7
Carnegie Mellon

Step 1a. Nodes in an Interference Graph

15-745: Register Allocation 8

B = …
= A

D =
= B + D

L1: C = …
= A

D =
= D + C

A = …
IF A goto L1

A = 2

= A

A
B C

D
Interference Graph

?

Should we add this edge?No, since new def of A

3

Carnegie Mellon

Live Ranges and Merged Live Ranges
• Motivation: to create an interference graph that is easier to color

– Eliminate interference in a variable’s “dead” zones.
– Increase flexibility in allocation:

• can allocate same variable to different registers
• A live range consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.

‒ How to compute a live range?
• live variables & reaching definitions

• Two overlapping live ranges for the same variable must be merged

15-745: Register Allocation 9

a = … a = …

… = a
Carnegie Mellon

Merge

15-745: Register Allocation 10

Example (Revisited)
A = ... (A1)
IF A goto L1

L1: C = ... (C1)
= A

D = ... (D1)
= D + C

B = ... (B1)
= A

D = … (D2)
= B + D

A = 2 (A2)

= A
ret D

{} {}{A} {A1}{A} {A1}
{A} {A1}{A,B} {A1,B1}{B} {A1,B1}{B,D} {A1,B1,D2}{D} {A1,B1,D2}

Live VariablesReaching Definitions

{A} {A1}{A,C} {A1,C1}{C} {A1,C1}{C,D} {A1,C1,D1}{D} {A1,C1,D1}

{D} {A1,B1,C1,D1,D2}{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}{D} {A2,B1,C1,D1,D2}

Recall: variable v is live at point p if the value of v is used on some path starting at p

Carnegie Mellon

Merging Live Ranges
• Merging definitions into equivalence classes

– Start by putting each definition in a different equivalence class
– Then, for each point in a program:

• if (i) variable is live, and (ii) there are multiple reaching definitions for the variable, then:
– merge the equivalence classes of all such definitions into one equivalence class

• (Sound familiar?)
• From now on, refer to merged live ranges simply as live ranges

– merged live ranges are also known as “webs”

15-745: Register Allocation 11
Carnegie Mellon

SSA Revisited: What Happens to  Functions
• Now we see why it is unnecessary to “implement” a  function

–  functions and SSA variable renaming simply turn into merged live ranges
• When you encounter: X4 = (X1, X2, X3)

– merge X1, X2, X3, andX4 into the same live range
– delete the  function

• Now you have effectively convertedback out of SSA form

15-745: Register Allocation 12

y1  x1 y2  2

y3  (y1,y2)z1  y3 + x1

x1  1
y1 y2

Merge

4

Carnegie Mellon

Step 1b. Edges of Interference Graph
• Intuitively:

– Two live ranges (necessarily of different variables) may interfereif they overlap at some point in the program
– Algorithm:

• At each point in the program:
– enter an edge for every pair of live ranges at that point

• An optimized definition & algorithm for edges:
– Algorithm:

• check for interference only at the start of each live range
– Faster
– Better quality

15-745: Register Allocation 13
Carnegie Mellon

Example 2

15-745: Register Allocation 14

A = … L1: B = …

IF Q goto L1

IF Q goto L2

L2: … = B… = A

Live range for A Live range for B

Live ranges overlap

Won’t assign A and B to same register(even though would have been ok: path sensitive vs. path insensitive analysis)

Carnegie Mellon

Step 2. Coloring
• Reminder: coloring for n > 2 is NP-complete
• Observations:

– a node with degree < n 
• can always color it successfully, given its neighbors’ colors

– a node with degree = n
• can color only if at least two neighbors share same color

– a node with degree > n
• maybe, not always

15-745: Register Allocation 15

A
B C

D

n=2

Carnegie Mellon

Review: Coloring Heuristic
• Algorithm:

– Iterate until stuck or done
• Pick any node with degree < n
• Remove the node and its edges from the graph

– If done (no nodes left)
• reverse process and add colors

• Example (n = 3):

• Note: degree of a node may drop in iteration
• Avoids making arbitrary decisions that make coloring fail (e.g., B, A, D different colors)
15-745: Register Allocation 16

B

CE A
D B

C
D
E B

CE A
D

A

5

Carnegie Mellon
15-745: Register Allocation 17

Coloring + Register Assignment
• Apply coloring heuristic

Build interference graphIterate until there are no nodes leftIf there exists a node v with less than n neighborpush v on register allocation stackelse return (coloring heuristics fail)remove v and its edges from graph
• Assign registers

While stack is not emptyPop v from stackReinsert v and its edges into the graphAssign v a color that differs from all its neighbors

Carnegie Mellon

What Does Coloring Accomplish?
• Done:

– colorable, also obtained an assignment
• Stuck:

– colorable or not?

15-745: Register Allocation 18

B

CE A
D

n=2
Example of stuck but colorable

Carnegie Mellon

IV. Extending Coloring: Design Principles
• A pseudo-register is

– Colored successfully: allocated a hardware register
– Not colored: left in memory

• Objective function
– Cost of an uncolored node:

• proportional to number of uses/definitions (dynamically)
• estimate by its loop nesting

– Objective: minimize sum of cost of uncolored nodes
• Heuristics

– Benefit of spilling a pseudo-register:
• increases colorability of pseudo-registers it interferes with
• can approximate by its degree in interference graph

– Greedy heuristic
• spill the pseudo-register with lowest cost-to-benefit ratio, whenever spilling is necessary

15-745: Register Allocation 19
Carnegie Mellon

Spilling to Memory
• CISC architectures

– can operate on data in memory directly
– memory operations are slower than register operations

• RISC architectures
– machine instructions can only apply to registers
– Use

• must first load data from memory to a register before use
– Definition

• must first compute RHS in a register
• store to memory afterwards

– Even if spilled to memory, needs a register at time of use/definition

15-745: Register Allocation 20

6

Carnegie Mellon
15-745: Register Allocation 21

Chaitin: Coloring and Spilling
• Apply coloring heuristic

Build interference graphIterate until there are no nodes leftIf there exists a node v with less than n neighborpush v on register allocation stackelse v = node with highest degree-to-cost ratiomark v as spilledremove v and its edges from graph
• Spilling may require use of registers; change interference graph

While there is spillingrebuild interference graph and perform step above
• Assign registers

While stack is not emptyPop v from stackReinsert v and its edges into the graphAssign v a color that differs from all its neighbors

Carnegie Mellon

Spilling
• What should we spill?

– Something that will eliminate a lot of interference edges
– Something that is used infrequently
– Maybe something that is live across a lot of calls?

• One Heuristic:
– Cost-to-degree-ratio = [(# defs & uses)*10loop-nest-depth]/degree
– Spill node with highest degree-to-cost ratio

15-745: Register Allocation 22

Carnegie Mellon

Quality of Chaitin’s Algorithm
• Can give up too quickly

• An optimization: “Prioritize the coloring”
– Still eliminate a node and its edges from graph
– Do not commit to “spilling” just yet
– Try to color again in assignment phase

15-745: Register Allocation 23

B
A C
D

E
n=2

Gives up but colorable

Carnegie Mellon

Splitting Live Ranges
• Recall: Split pseudo-registers into live ranges to create an interference graph that is easier to color

– Eliminate interference in a variable’s “dead” zones
– Increase flexibility in allocation:

• can allocate same variable to different registers

15-745: Register Allocation 24

IF A goto L1
A =

B = L1: C == AD = = AD =

A = D

= A

= B+D = C+D

A1

CB

D

A2

n=2

7

Carnegie Mellon

Insight
• Split a live range into smaller regions (by paying a small cost) to create an interference graph that is easier to color

– Eliminate interference in a variable’s “nearly dead” zones.
• Cost: Memory loads and stores

– Load and store at boundaries of regions with no activity
• # active live ranges at a program point can be > # registers

– Can allocate same variable to different registers
• Cost: Register operations

– a register copy between regions of different assignments
• # active live ranges cannot be > # registers

15-745: Register Allocation 25
Carnegie Mellon

15-745: Register Allocation 26

Splitting Live Range Example

FOR i = 0 TO 10
FOR j = 0 TO 10000

A = A + ...
(does not use B)

FOR j = 0 TO 10000
B = B + ...
(does not use A)

n=2 A
B i

j

spillB

spillA

spilli

Carnegie Mellon
15-745: Register Allocation 27

a =
b = = a + bc =

= b+c
b =
c = = a + c

n=2
Example: Allocate Same Variable to Different Registers

a

b c
Can’t 2-color

a =
b = = a + bc =

= b+c
b =
c = = a1 + c

a1 = a a

b c

a1

Can 2-color(“a” gets 2 regs)
Carnegie Mellon

Live Range Splitting
• When do we apply live range splitting?
• Which live range to split?
• Where should the live range be split?
• How to apply live-range splitting with coloring?

– Advantage of coloring:
• defers arbitrary assignment decisions until later

– When coloring fails to proceed, may not need to split live range
• degree of a node >= n does not mean that the graph definitely is not colorable

– Interference graph does not capture positions of a live range

15-745: Register Allocation 28

when more live ranges than registers
based on cost/benefit ratio
split where large inactive region

8

Carnegie Mellon

A Spilling Algorithm
• Observation: spilling is absolutely necessary if

– number of live ranges active at a program point > n
• Apply live-range splitting before coloring

– Identify a point where number of live ranges > n
– For each live range active around that point:

• find the outermost “block construct” that does not access the variable
– Choose a live range with the largest inactive region
– Split the inactive region from the live range

15-745: Register Allocation 29

k = k + 1

j = j + 1

i = i + 1

= x

x =
n=3

x
k i

j

split x, then can color

Carnegie Mellon

Summary
• Problems:

– Given n registers in a machine, is spilling avoided?
– Find an assignment for all pseudo-registers, whenever possible.

• Solution:
– Abstraction: an interference graph

• nodes: live ranges
• edges: presence of live range at time of definition

– Register Allocation and Assignment problems
• equivalent to n-colorability of interference graph

 NP-complete
– Heuristics to find an assignment for n colors

• successful: colorable, and finds assignment
• not successful: colorability unknown & no assignment

15-745: Register Allocation 30

Carnegie Mellon

Friday’s Class
• Instruction Scheduling [ALSU 10.1 – 10.2]

3115-745: Register Allocation

