Lecture 13

Region-Based Analysis

I. Basicldea

Il. Algorithm

Ill. Optimization and Complexity

IV. Comparing region-based analysis with iterative algorithms

[ALSU 9.7]
Phillip B. Gibbons 15-745: Region-Based Analysis 1

]
Motivation for Studying Region-Based Analysis

* Exploit the structure of block-structured programs in data flow
* Tiein several concepts studied:
— Use of structure in induction variables, loop invariant
* motivated by nature of the problem
« This lecture: can we use structure for speed?
— lterative algorithm for data flow
 This lecture: an alternative algorithm
— Reducibility
« all retreating edges of DFST are back edges
« reducible graphs converge quickly
* This lecture: algorithm exploits & requires reducibility
* Usefulness in practice
— Faster for “harder” analyses
— Useful for analyses related to structure
* Theoretically interesting: better understanding of data flow

Carnegie Mellon -

15-745: Region-Based Analysis 2

Review: Dominance

All pathsto 6, 7,0r 8
must visit 5 first

x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first

x dominates w (x dom w) iff x sdom w OR x =w

Carnegie Mellon -

15-745: Region-Based Analysis 3

| Big Picture A region in a flow graph is

a set of nodes with a
s M
Q)

header that dominates all
other nodes in a region

CHEHGF

A A'L i

Carnegie Mellon -

15-745: Region-Based Analysis 4

Basic Idea

* In Iterative Analysis:
* DEFINITION: Transfer function Fg:
summarize effect from beginning to end of basic block B

* In Region-Based Analysis: R
* DEFINITION: Transfer function Fg g: Frs
summarize effect from beginning of R to end of basic block B B :l
* Recursively

construct a larger region R from smaller regions
construct Fg ; from transfer functions for smaller regions
until the program is one region

* Let P be the region for the entire program,
and v be initial value at entry node
— out[B] = Fyg (V)

— in[B] = A g out[B’], where B’ is a predecessor of B

Carnegie Mellon -

15-745: Region-Based Analysis 5

]
1. Algorithm

1. Operations on transfer functions
2. How to build nested regions?

3. How to construct transfer functions that correspond to the larger regions?

Carnegie Mellon -

15-745: Region-Based Analysis 6

1. Operations on Transfer Functions

Example: Reaching Definitions

X
* Transfer function over a block: l
F(x) = Gen U (x — Kill)
F(x)

Input parameters

* Resulting transfer functions (after operations) must be consistent with this form:
— same equation
— updated values for Gen and Kill set parameters

Carnegie Mellon -

15-745: Region-Based Analysis 7

Operations on Transfer Functions: Composition
FyoF,

[<

F2(F1(x)) = Gen, U (Fy(x) - Kill,)
=Gen, U (Gen, U (x - Kill,)) - Kill,)

Gen,
Killy

-
-

e

=Gen, U (Gen, - Kill,) U (x = (Kill, U Kill,))

Gen,
T T o Kill,
Gen set Kill set 7
after composition after composition
: : Fa(Fy(x))

Carnegie Mellon -

15-745: Region-Based Analysis 8

Operations on Transfer Functions: Meet

Gen, Gen
; F F 2
Kill, ! 2 Ik,

Fy(x) A Fy(x)
(Recall that for Reaching Definitions, A = U.)

F,(x) A Fy(x) =Gen, U (x - Kill) U Gen, U (x - Kill,)
=(Gen, U Gen,) U (x - (Kill, N Kill,))

Gen set after A Kill set after A

Carnegie Mellon -

15-745: Region-Based Analysis 9

Operations on Transfer Functions: Closure

X F*(x) New Feature!
y / (We don’t have this in
iterative data flow analysis.)
F Gen
Kill
v

What is the value at the input of the block?
* including the possible effects of the back edge
- it may iterate 0, 1, 2, ..., = number of times

F*(x) = AgmzoyF" (x)

=XAF(X) AF(F(X)) A ... For Reaching Definitions
=xU (Gen U (x-Kill)) U (Gen U ((Gen U (x - Kill)) - Kill)) U ...
=Gen U (x-J)

Gen set Kill set (after closure)

Carnegie Mellon -

15-745: Region-Based Analysis 10

Recap of Operations on Transfer Functions

For Reaching Definitions:
« Transfer Function (F(x)):

F(x) = Gen U (x — Kill)

* Composition (F,(F,(x))):
Gen = Gen, U (Gen, - Kill,)

Kill = Kill; U Kill,
« Meet: (Fy(x) A F,(x)):
Gen = Gen, U Gen,

Kill = Kill; N Kill,
e Closure: (F*(x)):
Gen = Gen
Kill= &
Carnegie Mellon -
15-745: Region-Based Analysis 11

2. Structure of Nested Regions (An Example)

* Avregion in a flow graph is a set of nodes that
— includes a header, which dominates all other nodes in a region
¢ T1-T2 rule (Hecht & Ullman) for Reducible Flow Graphs

¢ T1: Remove a loop
If n is a node with a loop, i.e. an edge n->n, delete that edge

¢ T2: Remove a vertex
If there is a node n that has a unique predecessor, m,
then m may consume n by
deleting n and making all successors of n be successors of m.

Carnegie Mellon -

15-745: Region-Based Analysis 12

T1: Remove a n->n loop
Example T2: Remove a vertex
w/unique predecessor

o
oo
o

* Inreduced graph:
— each vertex represents a subgraph of original graph (a region).
— each edge represents an edge in original graph
* Limit flow graph: result of exhaustive application of T1 and T2
— independent of order of application
— reducible flow graph: limit flow graph has a single vertex

Carnegie Mellon -

15-745: Region-Based Analysis 13

T2: Remove a vertex

3. Transfer Functions for T2 Rule w/unique predecessor

Transfer function

Fg gt summarizes the effect from beginning of R to end of B

Fgin2): SUmmarizes the effect from beginning of R to beginning of H2
— Unchanged for blocks B in region Ry (Fg g = Fgyp)
— Frin2) = Ap Frp Where p is a predecessor of H,
— Forblocks B in region R,: Fgg = Fry5° Frinz)

Carnegie Mellon -

15-745: Region-Based Analysis 14

. T1: Remove a n->n loop
Transfer Functions for T1 Rule

R R: new region
(subsumes back edges
fromR; 2R,)

C /IND

Observations:
— the header of R, (i.e. H) is also the header of R
— we already know how to get from H to B for every block B in R;: i.e.Fg, 5
« this will be the /ast step in getting from the new R to B (composition)
— what’s new: we need to get from R to the input of H, including back edges!
« this involves both meet (A) and closure (*) operations

Carnegie Mellon -

15-745: Region-Based Analysis 15

. T1: Remove a n->n loop
Transfer Functions for T1 Rule

R R: new region
(subsumes back edges
fromR; 2R,)

C/IND

* Transfer Function Fy g
— Fring) = (Ap Frep) *, where p is a predecessor of H in R

— Fre=Fris® Frinm)

Carnegie Mellon -

15-745: Region-Based Analysis 16

Example
R4 Ry
R; AN
Rz Ry By

O

¢ A
By B
R Rule | R Friin) Fre1 Fre2 Fres Frea
Ry T, |8
R, T R

I1l. Complexity of Algorithm

OO O
~—

Ry Ty R,

R | T, |8

* R:region name; R’: region whose header will be subsumed
* Ty Frinry= ApFre, PEpred(HR'); Frar = Frogr © Frinw)
o TiFringy = (Ap Frp)®, pepred(HR'); Frg=Frp° Frinry)

15-745: Region-Based Analysis 17

B
— 4
R | Rule | R" | Feing) | Fros Frez Fres Fres Fres
Ry T By | Feo ForFe, Fa
Ry T Ry | Fos FroprFo: Frogr o Fes
Ry T Ry | Fea Frop1'Fos Froe2'Fos Fra,p3'Fes Fea
Ry T Ry | Fes Frapr'Fos Frae2'Fos Frs,e3'Fes Fea'Fos Fos
R | Frainm B | Frap /R4\
Ry | 1 By | Fosl Bs R;
Ry Fss'FM,mqw B, FaA'FM,mqka) BA/\
Ry | FaaFrajniry) B3 | FaosFrajnira) /
Ry | FoxFrainira) By | FeoFrainiea) Bs Ri
B1 | FooFrainier) B1 | ForFrainien) BZ/\B1

15-745: Region-Based Analysis 18

|
Optimization

¢ Let m = number of edges, n = number of nodes
* ldeas for optimization

— If we compute Fg 5 for every region B is in, then it is very expensive
— We are ultimately only interested in the entire region (E);
we need to compute only F g for every B.
* There are many common subexpressions between F¢ g, Fg g, ...
* Number of F g calculated =m

— Also, we need to compute Fy ;) Where R’ represents the region whose
header is subsumed.

* Number of Fg 5 calculated, where R is not final = n
* Total number of Fg g calculated: (m + n)
— Data structure keeps “header” relationship
* Practical algorithm: O(m log n)

* Complexity: O(ma(m,n)), o is inverse Ackermann function

Carnegie Mellon -

15-745: Region-Based Analysis 19

T1: Remove a n->n loop
T2: Remove a vertex
w/unique predecessor

Reducibility

If no T1, T2 is applicable before graph is reduced to single node, then split node
(make k copies of node, one per predecessor) and continue

* Worst case: exponential

¢ Most graphs (including GOTO programs) are reducible

15-745: Region-Based Analysis 20

IV. Comparison with Iterative Data Flow

* Applicability
— Definitions of F* can make technique more powerful than iterative algorithms
— Backward flow: reverse graph is not typically reducible.
* Requires more effort to adapt to backward flow than iterative algorithm
— More important for interprocedural optimization
* Speed
— lIrreducible graphs
* Iterative algorithm can process irreducible parts uniformly
 Serious “irreducibility” can be slow with region-based analysis
— Reducible graph & Cycles do not add information (common)
* Iterative: (depth + 2) passes
depth is 2.75 average, independent of code length
* Region-based analysis: Theoretically almost linear, typically O(m log n)
— Reducible & Cycles add information
* Iterative takes longer to converge
* Region-based analysis remains the same

Carnegie Mellon -

15-745: Region-Based Analysis 21

]
Wednesday’s Class

* Register Allocation [ALSU 8.8]

* Assignment #2 due Wednesday midnight

Carnegie Mellon -

15-745: Region-Based Analysis 22

