
1

Carnegie Mellon

Lecture 13
Region-Based Analysis

I. Basic Idea
II. Algorithm
III. Optimization and Complexity
IV. Comparing region-based analysis with iterative algorithms

Phillip B. Gibbons 15-745: Region-Based Analysis 1

[ALSU 9.7]
Carnegie Mellon

Motivation for Studying Region-Based Analysis
• Exploit the structure of block-structured programs in data flow
• Tie in several concepts studied:

– Use of structure in induction variables, loop invariant
• motivated by nature of the problem
• This lecture: can we use structure for speed?

– Iterative algorithm for data flow
• This lecture: an alternative algorithm

– Reducibility
• all retreating edges of DFST are back edges
• reducible graphs converge quickly
• This lecture: algorithm exploits & requires reducibility

• Usefulness in practice
– Faster for “harder” analyses
– Useful for analyses related to structure

• Theoretically interesting: better understanding of data flow
15-745: Region-Based Analysis 2

Carnegie Mellon
15-745: Region-Based Analysis 3

Review: Dominance

11

1

5

6 7

8

13

2

3

4

9

10

12

CFG

x dominates w (x dom w) iff x sdom w OR x = w

All paths to 6, 7, or 8must visit 5 first
x strictly dominates w (x sdom w) iff impossible to reach w without passing through x first

Carnegie Mellon

I. Big Picture

15-745: Region-Based Analysis 44

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

A region in a flow graph is a set of nodes with a header that dominates all other nodes in a region

2

Carnegie Mellon

Basic Idea
• In Iterative Analysis:

• DEFINITION: Transfer function FB: summarize effect from beginning to end of basic block B
• In Region-Based Analysis:

• DEFINITION: Transfer function FR,B:summarize effect from beginning of R to end of basic block B
• Recursivelyconstruct a larger region R from smaller regionsconstruct FR,B from transfer functions for smaller regionsuntil the program is one region
• Let P be the region for the entire program, and v be initial value at entry node

– out[B] = FP,B (v)
– in [B] =  B’ out[B’], where B’ is a predecessor of B

15-745: Region-Based Analysis 5

R
B

FR,B

Carnegie Mellon

II. Algorithm
1. Operations on transfer functions
2. How to build nested regions?
3. How to construct transfer functions that correspond to the larger regions?

15-745: Region-Based Analysis 6

Carnegie Mellon

1. Operations on Transfer Functions
Example: Reaching Definitions
• Transfer function over a block:

• Resulting transfer functions (after operations) must be consistent with this form:
– same equation
– updated values for Gen and Kill set parameters

15-745: Region-Based Analysis 7

F(x) = Gen (x – Kill)
F(x)

x

Input parameters

Carnegie Mellon

Gen set after composition Kill set after composition

Operations on Transfer Functions: Composition

F2(F1(x)) = Gen2  (F1(x) - Kill2)

15-745: Region-Based Analysis 8

F2(F1(x))

x

F2

F1 Gen1Kill1
Gen2Kill2

= Gen2  (Gen1  (x - Kill1)) - Kill2)
= Gen2  (Gen1 - Kill2) (x – (Kill1  Kill2))

F2 ◦ F1

3

Carnegie Mellon

F1(x)  F2(x) = Gen1  (x - Kill1)  Gen2  (x - Kill2)

Gen set after  Kill set after 

Operations on Transfer Functions: Meet

15-745: Region-Based Analysis 9

x

F2F1

F1(x)  F2(x)

Gen1Kill1
Gen2Kill2

(Recall that for Reaching Definitions,  =.)

= (Gen1  Gen2)  (x - (Kill1  Kill2))

Carnegie Mellon

Operations on Transfer Functions: Closure

F*(x) = ∧ ௡ஹ଴ Fn (x)

15-745: Region-Based Analysis 10

x
F GenKill

F*(x) New Feature!(We don’t have this initerative data flow analysis.)

What is the value at the input of the block?
• including the possible effects of the back edge
 it may iterate 0, 1, 2, …, ∞ number of Ɵmes

= x  (Gen (x - Kill))  (Gen ((Gen (x - Kill)) - Kill))  ...
= x  F(x)  F(F(x))  ...

Gen set Kill set (after closure)
= Gen (x -)

For Reaching Definitions

Carnegie Mellon

Recap of Operations on Transfer Functions
For Reaching Definitions:
• Transfer Function (F(x)):

• Composition (F2(F1(x))):

• Meet: (F1(x)  F2(x)):

• Closure: (F*(x)):

15-745: Region-Based Analysis 11

F(x) = Gen (x – Kill)

Gen = Gen2  (Gen1 - Kill2)Kill = Kill1  Kill2
Gen = Gen1  Gen2Kill = Kill1  Kill2
Gen = GenKill = 

Carnegie Mellon

2. Structure of Nested Regions (An Example)
• A region in a flow graph is a set of nodes that

– includes a header, which dominates all other nodes in a region
• T1-T2 rule (Hecht & Ullman) for Reducible Flow Graphs

• T1: Remove a loopIf n is a node with a loop, i.e. an edge n->n, delete that edge

• T2: Remove a vertex If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

15-745: Region-Based Analysis 12

4

Carnegie Mellon

Example

• In reduced graph:
– each vertex represents a subgraph of original graph (a region).
– each edge represents an edge in original graph

• Limit flow graph: result of exhaustive application of T1 and T2
– independent of order of application
– reducible flow graph: limit flow graph has a single vertex

15-745: Region-Based Analysis 13

a
b c

d

T2: Remove a vertex w/unique predecessor
T1: Remove a n->n loop

Carnegie Mellon

3. Transfer Functions for T2 Rule

• Transfer functionFR,B: summarizes the effect from beginning of R to end of BFR,in(H2): summarizes the effect from beginning of R to beginning of H2
– Unchanged for blocks B in region R1 (FR,B = FR1,B)
– FR,in(H2) = P FR,P, where p is a predecessor of H2
– For blocks B in region R2: FR,B = FR2,B ◦ FR,in(H2)

15-745: Region-Based Analysis 14

R1 R
H1

R2
H2

R1 R
H

R2

T2: Remove a vertex w/unique predecessor

Carnegie Mellon

R R: new region(subsumes back edges from R1 R1)

Transfer Functions for T1 Rule

Observations:
– the header of R1 (i.e. H) is also the header of R
– we already know how to get from H to B for every block B in R1: i.e. FR1,B

• this will be the last step in getting from the new R to B (composition)
– what’s new: we need to get from R to the input of H, including back edges!

• this involves both meet () and closure (*) operations
15-745: Region-Based Analysis 15

R1H

T1: Remove a n->n loop

Carnegie Mellon

Transfer Functions for T1 Rule

• Transfer Function FR,B
– FR,in(H) = (P FR1,P) *, where p is a predecessor of H in R
– FR,B = FR1,B ◦ FR,in(H)

15-745: Region-Based Analysis 16

R
R1H

R: new region(subsumes back edges from R1 R1)

p1
p2

T1: Remove a n->n loop

5

Carnegie Mellon

Example

• R: region name; R’: region whose header will be subsumed
• T2: FR,in(R’) = P FR,P , p ϵ pred(HR’); FR,BR’ = FR’,BR’ ◦ FR,in(R’)• T1: FR,in(R’) = (P FR’,P)*, p ϵ pred(HR’); FR,B = FR’,B ◦ FR,in(R’)

15-745: Region-Based Analysis 17

B1 B2 B4B3

R4

R1
R2

R3
R4

R3 B4
R2

R1
B1 B2

B3

R Rule R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4
R1 T2 B2 FB1 FB1 FB2 ◦ FR1,in(B2)
R2 T2 R1 FB3 FR1,B1 ◦ FR2,in(R1) FR1,B2 ◦ FR2,in(R1) FB3
R3 T1 R2 (FR2B1FR2B2)* FR2,B1 ◦ FR3,in(R2) FR2,B2 ◦ FR3,in(R2) FR2,B3 ◦ FR3,in(R2)
R4 T2 B4 FR3B3FR3B2 FR3,B1 FR3,B2 FR3,B3 FB4 ◦ FR4,in(B4)

Carnegie Mellon

III. Complexity of Algorithm

15-745: Region-Based Analysis 18

12345 1
2
3
4

R Rule R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4 FR,B5
R1 T2 B1 FB2 FB1·FB2 FB2
R2 T2 R1 FB3 FR1,B1·FB3 FR1,B2·FB3 FB3
R3 T2 R2 FB4 FR2,B1·FB4 FR2,B2·FB4 FR2,B3·FB4 FB4
R4 T2 R3 FB5 FR3,B1·FB5 FR3,B2·FB5 FR3,B3·FB5 FB4·FB5 FB5

R FR4,in(R)
R4 I
R3 FB5·FR4,in(R4)
R2 FB4·FR4,in(R3)
R1 FB3·FR4,in(R2)
B1 FB2·FR4,in(R1)

B FR4,B
B5 FB5·I
B4 FB4·FR4,in(R3)
B3 FB3·FR4,in(R2)
B2 FB2·FR4,in(R1)
B1 FB1·FR4,in(B1)

R4

R3
B4 R2

R1

B2 B1

B3

B5

Carnegie Mellon

Optimization
• Let m = number of edges, n = number of nodes
• Ideas for optimization

– If we compute FR,B for every region B is in, then it is very expensive
– We are ultimately only interested in the entire region (E); we need to compute only FE,B for every B.

• There are many common subexpressions between FE,B1, FE,B2, ...
• Number of FE,B calculated = m

– Also, we need to compute FR,in(R’), where R’ represents the region whose header is subsumed.
• Number of FR,B calculated, where R is not final = n

• Total number of FR,B calculated: (m + n)
– Data structure keeps “header” relationship

• Practical algorithm: O(m log n)
• Complexity: O(m(m,n)),  is inverse Ackermann function

15-745: Region-Based Analysis 19
Carnegie Mellon

Reducibility

• If no T1, T2 is applicable before graph is reduced to single node, then split node (make k copies of node, one per predecessor) and continue
• Worst case: exponential
• Most graphs (including GOTO programs) are reducible

15-745: Region-Based Analysis 20

1

2 3

T2: Remove a vertex w/unique predecessor
T1: Remove a n->n loop

6

Carnegie Mellon

IV. Comparison with Iterative Data Flow
• Applicability

– Definitions of F* can make technique more powerful than iterative algorithms
– Backward flow: reverse graph is not typically reducible.

• Requires more effort to adapt to backward flow than iterative algorithm
– More important for interprocedural optimization

• Speed
– Irreducible graphs

• Iterative algorithm can process irreducible parts uniformly
• Serious “irreducibility” can be slow with region-based analysis

– Reducible graph & Cycles do not add information (common)
• Iterative: (depth + 2) passesdepth is 2.75 average, independent of code length
• Region-based analysis: Theoretically almost linear, typically O(m log n)

– Reducible & Cycles add information
• Iterative takes longer to converge
• Region-based analysis remains the same

15-745: Region-Based Analysis 21
Carnegie Mellon

Wednesday’s Class
• Register Allocation [ALSU 8.8]

• Assignment #2 due Wednesday midnight

2215-745: Region-Based Analysis

