
1

Carnegie Mellon

Lecture 11:
Partial Redundancy Elimination

• Global code motion optimization
• Remove partially redundant expressions
• Loop invariant code motion
• Can be extended to do Strength Reduction

• No loop analysis needed
• Bidirectional flow problem

Phillip B. Gibbons 15-745: Partial Redundancy Elim. 1

[ALSU 9.5-9.5.2]
Carnegie Mellon

Redundancy
• A Common Subexpression is a Redundant Computation

• Occurrence of expression E at P is redundant if E is available there:
– E is evaluated along every path to P, with no operands redefined since.

• Redundant expression can be eliminated

15-745: Partial Redundancy Elim. 2

t1 = a + b t2 = a + b

t3 = a + b

Carnegie Mellon

Partial Redundancy
• Partially Redundant Computation

• Occurrence of expression E at P is partially redundant if E is partially availablethere:
– E is evaluated along at least one path to P, with no operands redefined since.

• Partially redundant expression can be eliminated if we can insert computations to make it fully redundant.

15-745: Partial Redundancy Elim. 3

t1 = a + b

t3 = a + b

Carnegie Mellon

Loop Invariants are Partial Redundancies
• Loop invariant expression is partially redundant

• As before, partially redundant computation can be eliminated if we insert computations to make it fully redundant.
• Remaining copies can be eliminated through copy propagation or more complex analysis of partially redundant assignments.

15-745: Partial Redundancy Elim. 4

t1 = a + b

a = …

a+b is available
a+b is not available

t1 = t2

a = …
t2 = a + b

After:

2

Carnegie Mellon

Partial Redundancy Elimination
• The Method:

1. Insert Computations to make partially redundant expression(s) fully redundant.
2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

• For this lecture, we assume one expression of interest, a+b.
– In practice, with some restrictions, can do many expressions in parallel.

15-745: Partial Redundancy Elim. 5
Carnegie Mellon

Which Occurrences Might Be Eliminated?
• In CSE,

– E is available at P if it is previously evaluated along every path to P, with no subsequent redefinitions of operands.
– If so, we can eliminate computation at P.

• In PRE,
– E is partially available at P if it is previously evaluated along at least one path to P, with no subsequent redefinitions of operands.
– If so, we might be able to eliminate computation at P, if we can insert computations to make it fully redundant.

• Occurrences of E where E is partially available are candidates for elimination.

15-745: Partial Redundancy Elim. 6

Carnegie Mellon

Finding Partially Available Expressions
• Forward flow problem

– Lattice = { 0, 1 }^n, meet is union () (elementwise max)Top = 0^n (= not PAVAIL), entry = 0^n, init = 0^n
• PAVOUT[b] = (PAVIN[b] – KILL[b])  AVLOC[b]
• PAVIN[b] =

• For a block,
• Expression is locally available (AVLOC) if computed & downwards exposed.
• Expression is killed (KILL) if any assignments to operands.

15-745: Partial Redundancy Elim. 7

 0^n b = entry
 PAVOUT[p] otherwise

p  preds(b)

… = a + b
a = …

a = …
… = a + b

… = a + b

{e2}

Meet Operator: Union

{e1}
{e1,e2}

T = {}

AVLOC=0, KILL=0AVLOC=0, KILL=1AVLOC=1, KILL=1AVLOC=1, KILL=0
Carnegie Mellon

Partial Availability Example
• For expression a+b

• Occurrence in loop is partially redundant (PAVIN=1)
15-745: Partial Redundancy Elim. 8

t1 = a + b

a = …

a = …
t2 = a + b

KILL = 1
AVLOC = 0

KILL = 0
AVLOC = 1

KILL = 1
AVLOC = 1

PAVIN =
PAVOUT =

PAVIN =
PAVOUT =

PAVIN =
PAVOUT =

PAVOUT[entry] = 0

PAVOUT[b] = (PAVIN[b] – KILL[b])  AVLOC[b]

0
0

0

0

0

1

1

1

1 (2nd iteration)

3

Carnegie Mellon

Where Can We Insert Computations?
• Safety: never introduce a new expression along any path.

– Insertion could introduce exception, change program behavior.
– If we can add a new basic block, can insert safely in most cases.
– Solution: insert expression only where it is anticipated.

• Performance: never increase the # of computations on any path.
– Under simple model, guarantees program won’t get worse.
– Reality: might increase register lifetimes, add copies, lose.

15-745: Partial Redundancy Elim. 9

t1 = a + b

t3 = a + b

Unsafe to inserta+b here

Carnegie Mellon

Finding Anticipated Expressions
• Backward flow problem

– Lattice = { 0, 1 }, meet is intersection (), top = 1 (ANT), exit = 0, init = 1
• ANTIN[i] = ANTLOC[i]  (ANTOUT[i] - KILL[i])
• ANTOUT[i] =

• For a block,
• Expression locally anticipated (ANTLOC) if defined & upwards exposed

15-745: Partial Redundancy Elim. 10

 0 i = exit
 ANTIN[s] otherwise

s  succ(i)

… = a + b
a = …

a = …
… = a + b

ANTLOC=0, KILL=1 ANTLOC=1, KILL=1 ANTLOC=0, KILL=0

Carnegie Mellon

Anticipation Example
• For expression a+b

• Expression is anticipated at end of first block (ANTOUT=1)
• Computation may be safely inserted there
15-745: Partial Redundancy Elim. 11

t1 = a + b

a = …

a = …
t2 = a + b

KILL = 1
ANTLOC = 0

KILL = 0
ANTLOC = 1

KILL = 1
ANTLOC = 0

ANTIN =
ANTOUT =

ANTIN =
ANTOUT =

ANTIN =
ANTOUT =
ANTIN[exit] = 0

ANTIN[i] = ANTLOC[i]  (ANTOUT[i] - KILL[i])
1

1

1
0

0

0

1
0

Carnegie Mellon

Where Do We Want to Insert Computations?
• Morel-Renvoise and variants: “Placement Possible”

– Dataflow analysis shows where to insert:
• PPIN = “Placement possible at entry of block or before.”
• PPOUT = “Placement possible at exit of block or before.”

– Insert at earliest place where PPIN = 1.
– Only place at end of blocks,

• PPIN really means “Placement possible or not necessary in each predecessor block.”
– Don’t need to insert where expression is already available.

• INSERT[i] = PPOUT[i]  (PPIN[i]  KILL[i])  AVOUT[i]

– Remove (upwards-exposed) computations where PPIN=1.
• DELETE[i] = PPIN[i]  ANTLOC[i]

15-745: Partial Redundancy Elim. 12

Can put it here Can’t move it back any further Not already available

Moved earlier Used locally here

4

Carnegie Mellon

Where Do We Want to Insert? Example

15-745: Partial Redundancy Elim. 13

t1 = a + b

a = …

a = …
t2 = a + b

PPIN =
PPOUT =

PPIN =
PPOUT =

PPIN =
PPOUT =

0
1

0

0
0

1

Insert here

Delete here

Carnegie Mellon

Formulating the Problem
• PPOUT: we want to place at output of this block only if

– we want to place at entry of all successors (correctness & performance)
• PPIN: we want to place at input of this block only if (all of):

– we have a local computation to place, or a placement at the end of this block which we can move up
– we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
– we can gain something by placing it here (PAVIN)

• Forward or Backward?
– BOTH!

• Problem is bidirectional, but lattice {0, 1} is finite, so
– as long as transfer functions are monotone, it converges.

15-745: Partial Redundancy Elim. 14

Carnegie Mellon

Computing “Placement Possible”
• PPOUT: we want to place at output of this block only if

– we want to place at entry of all successors
• PPOUT[i] =

• PPIN: we want to place at start of this block only if (all of):
– we have a local computation to place, or a placement at the end of this block which we can move up
– we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
– we gain something by moving it up (PAVIN heuristic)

• PPIN[i] =

15-745: Partial Redundancy Elim. 15

 PPIN[s]
s  succ(i)

(ANTLOC[i]  (PPOUT[i] – KILL[i]))
 (PPOUT[p]  AVOUT[p])
 PAVIN[i]p  preds(i)

Carnegie Mellon

“Placement Possible” Example 1

15-745: Partial Redundancy Elim. 16

t1 = a + b

a = …

a = …
t2 = a + b

KILL = 1
AVLOC = 0
ANTLOC = 0
KILL = 0
AVLOC = 1
ANTLOC = 1

KILL = 1
AVLOC = 1
ANTLOC = 0

PAVIN = 0
PAVOUT = 0
AVOUT = 0
PAVIN = 1
PAVOUT = 1
AVOUT = 1

PAVIN = 1
PAVOUT = 1
AVOUT = 1

PPIN =

PPOUT =
PPIN =

PPOUT =

PPIN =

PPOUT =

PPOUT[entry] = 0

PPIN[exit] = 0

16

(ANTLOC[i]  (PPOUT[i] – KILL[i]))
 (PPOUT[p]  AVOUT[p])
 PAVIN[i]
p  preds(i)

0
1

1
0

0

0

Insert here

Delete here

5

Carnegie Mellon

“Placement Possible” Example 2

15-745: Partial Redundancy Elim. 17

a = …

a = …
t1 = a + b

t2 = a + b

KILL = 1
AVLOC = 1
ANTLOC = 0
KILL = 1
AVLOC = 0
ANTLOC = 0

KILL = 0
AVLOC = 1
ANTLOC = 1

PAVIN = 0
PAVOUT = 1
AVOUT = 1
PAVIN = 0
PAVOUT = 0
AVOUT = 0

PAVIN = 1
PAVOUT = 1
AVOUT = 1

PPIN =

PPOUT =
PPIN =

PPOUT =

PPIN =

PPOUT =

PPOUT[entry] = 0

PPIN[exit] = 0

17

(ANTLOC[i]  (PPOUT[i] – KILL[i]))
 (PPOUT[p]  AVOUT[p])
 PAVIN[i]
p  preds(i)

0
1

0
1

1
0

Insert here
Delete here

Carnegie Mellon

“Placement Possible” Correctness
• Convergence of analysis: transfer functions are monotone
• Safety: Insert only if anticipated

PPIN[i]  (PPOUT[i] – KILL[i])  ANTLOC[i]

PPOUT[i] =

• INSERT PPOUT  ANTOUT, so insertion is safe
• Performance: never increase the # of computations on any path

• DELETE = PPIN  ANTLOC
• On every path from an INSERT, there is a DELETE
• The number of computations on a path does not increase

15-745: Partial Redundancy Elim. 18

 PPIN[s]
s  succ(i)

Carnegie Mellon

Morel-Renvoise Limitations
• Movement usefulness tied to PAVIN heuristic

– Makes some useless moves, might increase register lifetimes:

– Doesn’t find some eliminations:

• Bidirectional data flow difficult to compute
15-745: Partial Redundancy Elim. 19

a+b

a+b

a+b
a+b a+b not PAVIN so not PPIN

not PPIN for all succ, so not PPOUT
PAVIN & ANTLOC, so PPIN

PAVIN & ANTLOC, so PPIN

Not anticipated, so incorrect to place here
a+b moved here

Fails to move a+b here

Carnegie Mellon

Friday’s Class
• Lazy Code Motion [ALSU 9.5.3-9.5.6]

2015-745: Partial Redundancy Elim.

