Lecture 11:

Partial Redundancy Elimination

* Global code motion optimization
* Remove partially redundant expressions
* Loop invariant code motion
¢ Can be extended to do Strength Reduction

* No loop analysis needed
* Bidirectional flow problem

[ALSU 9.5-9.5.2]
1

Phillip B. Gibbons 15-745: Partial Redundancy Elim

]
Redundancy

* A Common Subexpression is a Redundant Computation

tl=a+b t2=a+b

—

t3 =a+b

* Occurrence of expression E at P is redundant if E is available there:
— Eis evaluated along every path to P, with no operands redefined since.
* Redundant expression can be eliminated

Carnegie Mellon -

15-745: Partial Redundancy Elim 2

Partial Redundancy

« Partially Redundant Computation

tl=a+b

—

t3=a+b

¢ Occurrence of expression E at P is partially redundant if E is partially available
there:

— Eis evaluated along at least one path to P, with no operands redefined since.

Partially redundant expression can be eliminated if we can insert computations to
make it fully redundant.

Carnegie Mellon -

15-745: Partial Redundancy Elim. 3

Loop Invariants are Partial Redundancies

* Loop invariant expression is partially redundant

After:
a= . a = .
t2 =a+b
l a+b is not available l
a+b is available tl=a+b tl = t2

As before, partially redundant computation can be eliminated if we insert

computations to make it fully redundant.

Remaining copies can be eliminated through copy propagation or more complex
analysis of partially redundant assignments.

Carnegie Mellon -

15-745: Partial Redundancy Elim 4

Partial Redundancy Elimination

¢ The Method:

1. Insert Computations to make partially redundant expression(s) fully
redundant.

2. Eliminate redundant expression(s).
* Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?
* For this lecture, we assume one expression of interest, a+b.

— In practice, with some restrictions, can do many expressions in parallel.

Carnegie Mellon -

15-745: Partial Redundancy Elim. 5

]
Which Occurrences Might Be Eliminated?

¢ InCSE,

— Eis available at P if it is previously evaluated along every path to P, with no
subsequent redefinitions of operands.

— If so, we can eliminate computation at P.
* InPRE,

— Eis partially available at P if it is previously evaluated along at least one path
to P, with no subsequent redefinitions of operands.

— If so, we might be able to eliminate computation at P, if we can insert
computations to make it fully redundant.

* Occurrences of E where E is partially available are candidates for elimination.

Carnegie Mellon -

15-745: Partial Redundancy Elim 6

Finding Partially Available Expressions

* Forward flow problem

— Llattice={ 0, 1 }*n, meet is union (V) (elementwise max) T=0
Top = 0”n (= not PAVAIL), entry = 0”n, init=0"n / \
{e1} {e2}
* PAVOUT[b] = (PAVIN[b] - KILL[b]) U AVLOC[b]
0*n b =entry \‘{el eZ;/
« PAVIN[b] = /
U PAVOUT[p] otherwise Meet Operator:
p epreds(b) Union

¢ Forablock,
« Expression is locally available (AVLOC) if computed & downwards exposed.
* Expression is killed (KILL) if any assignments to operands.

' ' ' '

= b a = . . =a+b
.=a+b a = .
AVLOC=1, KILL=0 AVLOC=1, KILL=1 AVLOC=0, KILL=1 AVLOC=0, KILL=0
Carnegie Mellon -
15-745: Partial Redundancy Elim. 7

Partial Availability Example

* For expression a+b PAVOUTI[entry] = 0

a = .. KILL=1 PAVIN= 0O
AVLOC=0 PAVOUT = 0

tl=a+b KILL=0 PAVIN= 0 1(2jteration)
AVIOC=1 PAVOUT= 0 1

a = . KILL=1 PAVIN= 1

t2=a+b AVIOC=1 PAVOUT=0 1

PAVOUT[b] = (PAVIN[b] - KILL[b]) U AVLOC[b]

* Occurrence in loop is partially redundant (PAVIN=1)

Carnegie Mellon -

15-745: Partial Redundancy Elim 8

Where Can We Insert Computations?

« Safety: never introduce a new expression along any path.

tl=a+b .
Unsafe to insert
a+b here
t3 =a+b

— Insertion could introduce exception, change program behavior.
— If we can add a new basic block, can insert safely in most cases.
— Solution: insert expression only where it is anticipated.

* Performance: never increase the # of computations on any path.
— Under simple model, guarantees program won’t get worse.

— Reality: might increase register lifetimes, add copies, lose.

Carnegie Mellon -

15-745: Partial Redundancy Elim. 9

Finding Anticipated Expressions

» Backward flow problem
— Llattice={0, 1}, meet s intersection (N), top = 1 (ANT), exit = 0, init=1

* ANTIN[i] = ANTLOC[i] U (ANTOUTIi] - KILL[i])
0 i=exit
* ANTOUTI[i] =
M ANTIN[s] otherwise

s esuccfi)
* For a block,

* Expression locally anticipated (ANTLOC) if defined & upwards exposed

' ' '

a = . . =a+b
=a+b a =
ANTLOC=0, KILL=1 ANTLOC=1, KILL=1 ANTLOC=0, KILL=0
Carnegie Mellon -
15-745: Partial Redundancy Elim 10

Anticipation Example

* For expression a+b ANTIN[i] = ANTLOC[i] U (ANTOUTIi] - KILL[i])

a = .. KILL=1 ANTIN= 1 0
ANTLOC=0 ANTOUT = 1

tl=a+b KILL=0 ANTIN= 1
ANTLOC=1 ANTOUT=0

a = .. KILL=1 ANTIN= 10

t2=a+b ANTLOC=0 ANTOUT= 0

ANTIN[exit] = 0

« Expression is anticipated at end of first block (ANTOUT=1)
« Computation may be safely inserted there

Carnegie Mellon -

15-745: Partial Redundancy Elim. 11

Where Do We Want to Insert Computations?

* Morel-Renvoise and variants: “Placement Possible”
— Dataflow analysis shows where to insert:
* PPIN = “Placement possible at entry of block or before.”
* PPOUT = “Placement possible at exit of block or before.”
— Insert at earliest place where PPIN = 1.
— Only place at end of blocks,
* PPIN really means “Placement possible or not necessary in each predecessor block.”
— Don’t need to insert where expression is already available.

* INSERT[i] = PPOUT[i] M (=PPIN[i] U KILL[i]) n —=AVOUTIi]

Can put Can’t move it Not already
it here back any further available

Remove (upwards-exposed) computations where PPIN=1.

» DELETE[i] = PPIN[i] ™ ANTLOC[i]
Moved Used locally
earlier here

Carnegie Mellon -

15-745: Partial Redundancy Elim 12

Where Do We Want to Insert? Example

a = .. PPIN = 0

PPOUT= 1 Insert here
tl=a+b PPIN= 1 Delete here

PPOUT= 0
a = .. PPIN= 0
t2=a+b PPOUT= 0

Carnegie Mellon -
15-745: Partial Redundancy Elim. 13

Formulating the Problem

* PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors (correctness & performance)
* PPIN: we want to place at input of this block only if (all of):

— we have a local computation to place, or a placement at the end of this block
which we can move up

— we want to move computation to output of all predecessors where expression
is not already available (don’t insert at input)

— we can gain something by placing it here (PAVIN)
* Forward or Backward?
— BOTH!

* Problem is bidirectional, but lattice {0, 1} is finite, so

— as long as transfer functions are monotone, it converges.

Carnegie Mellon -

15-745: Partial Redundancy Elim 14

Computing “Placement Possible”

* PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors
« PPOUT[i]= M PPIN[s]
s esuccfi)

* PPIN: we want to place at start of this block only if (all of):

— we have a local computation to place, or a placement at the end of this block
which we can move up

— we want to move computation to output of all predecessors where expression
is not already available (don’t insert at input)

— we gain something by moving it up (PAVIN heuristic)
(ANTLOC[i] U (PPOUTIi] - KILL[i]))
« PPIN[]= N f\d ”(PPOUT[p] U AVOUT[p))
p & preds(
A PAVIN[i]

Carnegie Mellon -

15-745: Partial Redundancy Elim. 15

“Placement Possible” Example 1

PPOUT[entry] =0

a = KILL=1 PAVIN =0 PPIN= 0
AVLOC=0 PAVOUT =0 Insert here
l ANTLOC=0 AVOUT =0 PPOUT = 1
tl=a+b | K=o PAVIN =1 PPIN= 1 Delete here
AVLOC=1 PAVOUT =1
ANTLOC=1 AVOUT =1 PPOUT= 0
l KILL=1 PAVIN =1 PPIN= O
a = ..
t2 =a + b AVLOC=1 PAVOUT =1
* ANTLOC=0 AVOUT =1 PPOUT=0
PPIN[exit] = 0
(ANTLOCi] U (PPOUTIi] ~ KILL[i]))
A, [, (PPOUTIp] U AVOUTIp])

Carnegie Mellon -

15-745: Partial Redundancy Elim a) PAV|N[|]

“Placement Possible” Example 2

J PPOUT[entry] =0
a = KILL=1 PAVIN = 0 PPIN= 0
tl=a+b AVLOC=1 PAVOUT =1
/ ANTLOC=0 AVOUT=1 PPOUT = 1
a = KILL=1 PAVIN =0 PPIN= 0
AVLOC=0 PAVOUT =0
ANTLOC=0 AVOUT =0 PPOUT= 1 Insert here
t2 =a + b KILL=0 PAVIN =1 PPIN="1 Delete here
AVLOC=1 PAVOUT =1
ANTLOC=1 AVOUT=1 PPOUT = 0
l PPIN[exit] = 0

(ANTLOC[i] U (PPOUTIi] - KILLIi]))
Ny ECID!S(?) (PPOUT[p] LU AVOUT(p])

Carnegie Mellon -

15-745: Partial Redundancy Elim.| Ia) PAVlN[l]

“Placement Possible” Correctness

* Convergence of analysis: transfer functions are monotone
« Safety: Insert only if anticipated

PPIN[i] (PPOUTIi] = KILL[i]) W ANTLOCIi]

PPOUT[]= M PPIN[s]

s & succfi)

* INSERT € PPOUT € ANTOUT, so insertion is safe

* Performance: never increase the # of computations on any path
* DELETE = PPIN M ANTLOC
* On every path from an INSERT, there is a DELETE
¢ The number of computations on a path does not increase

Carnegie Mellon -

15-745: Partial Redundancy Elim 18

Morel-Renvoise Limitations

* Movement usefulness tied to PAVIN heuristic
— Makes some useless moves, might increase register lifetimes:

=+ | L

Not anticipated, so incorrect to place here

a+b moved here | | | |

PAVIN & ANTLOC, so PPIN

— Doesn’t find some eliminations:

not PPIN for all succ, so not PPOUT
Fails to move a+b here

not PAVIN so not PPIN

PAVIN & ANTLOC, so PPIN

« Bidirectional data flow difficult to compute

Carnegie Mellon -

15-745: Partial Redundancy Elim. 19

]
Friday’s Class

* Lazy Code Motion [ALSU 9.5.3-9.5.6]

Carnegie Mellon -

15-745: Partial Redundancy Elim 20

