
1

Carnegie Mellon

15-745: Optimizing Compilers for Modern Architectures

Lecture 1: Introduction
What would you get out of this course?

Structure of a Compiler
Optimization Example

Phillip B. Gibbons 15-745: Introduction 1
Carnegie Mellon

Course Logistics
• Want to get off the waitlist?

– See me in my office (GHC 7221) after class to discuss
– This course is not intended to be your first compiler course

• Let Dominic know if can’t get on Piazza or Blackboard for this course

• Need to get the book

• Let’s run through the course webpage at http://www.cs.cmu.edu/~15745/

Phillip B. Gibbons15-745: Introduction 2

Carnegie Mellon

What Do Compilers Do?
1. Translate one language into another

– e.g., convert C++ into x86 object code
– difficult for “natural” languages, but feasible for computer languages

2. Improve (i.e. “optimize”) the code
– e.g., make the code run 3 times faster

• or more energy efficient, more robust, etc.
– driving force behind modern processor design

15-745: Introduction 3
Carnegie Mellon

How Can the Compiler Improve Performance?
Execution time = Operation count * Machine cycles per operation

• Minimize the number of operations 
– arithmetic operations, memory accesses

• Replace expensive operations with simpler ones
– e.g., replace 4-cycle multiplication with 1-cycle shift

• Minimize cache misses 
– both data and instruction accesses

• Perform work in parallel
– instruction scheduling within a thread
– parallel execution across multiple threads

More accurately, machine cycles per operation must account for instruction overlap

15-745: Introduction 4

Processor

memory
cache



2

Carnegie Mellon

What Would You Get Out of This Course?
• Basic knowledge of existing compiler optimizations
• Hands-on experience in constructing optimizations within a fully functional research compiler
• Basic principles and theory for the development of new optimizations

15-745: Introduction 5
Carnegie Mellon

II. Structure of a Compiler

• Optimizations are performed on an “intermediate form”
– similar to a generic RISC instruction set

• Allows easy portability to multiple source languages, target machines

15-745: Introduction 6

Source Code Intermediate Form Object Code

C
C++
Java

Verilog

FrontEnd BackEndOptimizer
Alpha

SPARC
x86

IA-64

x86
ARM
SPARC
MIPS

Carnegie Mellon

Ingredients in a Compiler Optimization
• Formulate optimization problem 

– Identify opportunities of optimization
• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to optimization

15-745: Introduction 7

abstractionstatic statementsdynamic execution
graphsmatricesinteger programs

MathematicalModelPrograms

solutionsgenerated code

relations

Carnegie Mellon

Ingredients in a Compiler Optimization
• Formulate optimization problem 

– Identify opportunities of optimization
• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to optimization

• Analysis 
– Detect when it is desirable and safe to apply transformation 

• Code Transformation
• Experimental Evaluation (and repeat process)

15-745: Introduction 8



3

Carnegie Mellon

Representation: Instructions
• Three-address code

A := B op C
• LHS: name of variable e.g. x, A[t] (address of A + contents of t)
• RHS: value

• Typical instructions
A := B op C
A := unaryop B
A := B
GOTO s
IF A relop B GOTO s
CALL f
RETURN

15-745: Introduction 9
Carnegie Mellon

III. Optimization Example
• Bubblesort program that sorts an array A that is allocated in static storage:

– an element of A requires four bytes of a byte-addressed machine
– elements of A are numbered 1 through n (n is a variable)
– A[j] is in location &A+4*(j-1)

FOR i := n-1 DOWNTO 1 DO
FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN
temp := A[j];
A[j] := A[j+1];
A[j+1] := temp

END

15-745: Introduction 10

Carnegie Mellon

Translated Code
i := n-1

S5:  if i<1 goto s1
j := 1

s4: if j>i goto s2
t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t4 := j+1
t5 := t4-1
t6 := 4*t5
t7 := A[t6]   ;A[j+1]
if t3<=t7 goto s3

t8 :=j-1
t9 := 4*t8
temp := A[t9]  ;A[j]
t10 := j+1
t11:= t10-1
t12 := 4*t11
t13 := A[t12]  ;A[j+1]
t14 := j-1
t15 := 4*t14
A[t15] := t13 ;A[j]:=A[j+1]
t16 := j+1
t17 := t16-1
t18 := 4*t17
A[t18]:=temp  ;A[j+1]:=temp

s3: j := j+1
goto S4

S2: i := i-1
goto s5

s1:

15-745: Introduction 11

FOR i := n-1 DOWNTO 1 DO
FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN
temp := A[j];
A[j] := A[j+1];
A[j+1] := temp

END Carnegie Mellon

Representation: a Basic Block
• Basic block = a sequence of 3-address statements 

– only the first statement can be reached from outside the block (no branches into middle of block)
– all the statements are executed consecutively if the first one is (no branches out or halts except perhaps at end of block)

• We require basic blocks to be maximal
– they cannot be made larger without violating the conditions

• Optimizations within a basic block are local optimizations

15-745: Introduction 12



4

Carnegie Mellon

Flow Graphs
• Nodes: basic blocks
• Edges: Bi -> Bj, iff Bj can follow Bi immediately in some execution

– Either first instruction of Bj is target of a goto at end of Bi
– Or, Bj physically follows Bi, which does not end in an unconditional goto.

• The block led by first statement of the program is the start, or entry node.

15-745: Introduction 13
Carnegie Mellon

Find the Basic Blocks
i := n-1

S5:  if i<1 goto s1
j := 1

s4: if j>i goto s2
t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t4 := j+1
t5 := t4-1
t6 := 4*t5
t7 := A[t6]   ;A[j+1]
if t3<=t7 goto s3

t8 :=j-1
t9 := 4*t8
temp := A[t9]  ;A[j]
t10 := j+1
t11:= t10-1
t12 := 4*t11
t13 := A[t12]  ;A[j+1]
t14 := j-1
t15 := 4*t14
A[t15] := t13 ;A[j]:=A[j+1]
t16 := j+1
t17 := t16-1
t18 := 4*t17
A[t18]:=temp  ;A[j+1]:=temp

s3: j := j+1
goto S4

S2: i := i-1
goto s5

s1:

15-745: Introduction 14

Carnegie Mellon

Basic Blocks from Example

15-745: Introduction 15

i := n-1

if i<1 goto out

j := 1

if j>i goto B5

i := i-1
goto B2

t1 := j-1
...
if t3<=t7 goto B8

t8 :=j-1
...
A[t18]=temp

j := j+1
goto B4

B1

B2

B3

B4

B5

B6

B7

B8

in

o ut

Carnegie Mellon

Sources of Optimizations
• Algorithm optimization

• Algebraic optimization
A := B+0     =>     A := B

• Local optimizations 
– within a basic block -- across instructions

• Global optimizations 
– within a flow graph -- across basic blocks

• Interprocedural analysis
– within a program -- across procedures (flow graphs)

15-745: Introduction 16



5

Carnegie Mellon

Local Optimizations
• Analysis & transformation performed within a basic block
• No control flow information is considered
• Examples of local optimizations:

• local common subexpression eliminationanalysis: same expression evaluated more than once in b. transformation: replace with single calculation

• local constant folding or eliminationanalysis: expression can be evaluated at compile timetransformation: replace by constant, compile-time value

• dead code elimination

15-745: Introduction 17
Carnegie Mellon

i := n-1
S5:  if i<1 goto s1

j := 1
s4: if j>i goto s2

t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t4 := j+1
t5 := t4-1
t6 := 4*t5
t7 := A[t6]   ;A[j+1]
if t3<=t7 goto s3

Example
t8 :=j-1
t9 := 4*t8
temp := A[t9]  ;A[j]
t10 := j+1
t11:= t10-1
t12 := 4*t11
t13 := A[t12]  ;A[j+1]
t14 := j-1
t15 := 4*t14
A[t15] := t13 ;A[j]:=A[j+1]
t16 := j+1
t17 := t16-1
t18 := 4*t17
A[t18]:=temp  ;A[j+1]:=temp

s3: j := j+1
goto S4

S2: i := i-1
goto s5

s1:

15-745: Introduction 18

Carnegie Mellon

Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1

t2 := 4*t1
t3 := A[t2]     ;A[j]
t6 := 4*j
t7 := A[t6]    ;A[j+1]
if t3<=t7 goto B8

B7: t8 :=j-1
t9 := 4*t8
temp := A[t9]  ;temp:=A[j]
t12 := 4*j
t13 := A[t12] ;A[j+1]
A[t9]:= t13 ;A[j]:=A[j+1]
A[t12]:=temp   ;A[j+1]:=temp

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

15-745: Introduction 19
Carnegie Mellon

(Intraprocedural) Global Optimizations
• Global versions of local optimizations

– global common subexpression elimination
– global constant propagation 
– dead code elimination

• Loop optimizations
– reduce code to be executed in each iteration
– code motion
– induction variable elimination

• Other control structures
– Code hoisting: eliminates copies of identical code on parallel paths in a flow graph to reduce code size.

15-745: Introduction 20



6

Carnegie Mellon

Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1

t2 := 4*t1
t3 := A[t2]     ;A[j]
t6 := 4*j
t7 := A[t6]    ;A[j+1]
if t3<=t7 goto B8

B7: t8 :=j-1
t9 := 4*t8
temp := A[t9] ;temp:=A[j]
t12 := 4*j
t13 := A[t12] ;A[j+1]
A[t9]:= t13 ;A[j]:=A[j+1]
A[t12]:=temp  ;A[j+1]:=temp

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

15-745: Introduction 21
Carnegie Mellon

Example (After Global CSE)
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1

t2 := 4*t1
t3 := A[t2]     ;A[j]
t6 := 4*j
t7 := A[t6]    ;A[j+1]
if t3<=t7 goto B8

B7: A[t2] := t7        
A[t6] := t3    

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

15-745: Introduction 22

Carnegie Mellon

Induction Variable Elimination
• Intuitively

– Loop indices are induction variables(counting iterations)
– Linear functions of the loop indices are also induction variables(for accessing arrays)

• Analysis: detection of induction variable
• Optimizations

– strength reduction: 
• replace multiplication by additions

– elimination of loop index: 
• replace termination by tests on other induction variables

15-745: Introduction 23
Carnegie Mellon

Example

15-745: Introduction 24

B7: A[t2] := t7        
A[t6] := t3    

B8: j := j+1
goto B4

B5: i := i-1
goto B2

out:

B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1

t2 := 4*t1
t3 := A[t2]     ;A[j]
t6 := 4*j
t7 := A[t6]    ;A[j+1]
if t3<=t7 goto B8



7

Carnegie Mellon

Example (After Induction Variable Elimination)
B1:  i := n-1
B2:  if i<1 goto out
B3:  t2 := 0

t6 := 4
B4:  t19 := 4*i

if t6>t19 goto B5
B6:  t3 := A[t2]

t7 := A[t6] ;A[j+1]
if t3<=t7 goto B8

B7: A[t2] := t7
A[t6] := t3

B8:  t2 := t2+4
t6 := t6+4
goto B4

B5:  i := i-1
goto B2

out:

15-745: Introduction 25
Carnegie Mellon

Loop Invariant Code Motion
• Analysis

– a computation is done within a loop and
– result of the computation is the same as long as we keep going around the loop

• Transformation
– move the computation outside the loop

15-745: Introduction 26

B4: t19 := 4*i
B4: if t6>t19 goto B5

t19 := 4*i
if t6>t19 goto B5

Carnegie Mellon

Machine Dependent Optimizations
• Register allocation
• Instruction scheduling
• Memory hierarchy optimizations
• etc.

15-745: Introduction 27
Carnegie Mellon

Wednesday’s Class
• Dominic will present “LLVM Compiler: Getting Started”

– part 1 of 2 on LLVM
• Assignment 1 will be handed out

Phillip B. Gibbons15-745: Introduction 28


