Lecture 7

More Examples of Data Flow Analysis: Global
Common Subexpression Elimination; Constant
Propagation/Folding
I. Available Expressions Analysis

Il. Eliminating CSEs

lll. Constant Propagation/Folding

Reading: 9.2.6,9.4

Todd C. Mowry 15-745: GCSE & Constants 1

Global Common Subexpressions

add tl = x, y
add t2 = ¢, d
/\
ldc t3 =0 sub t5 = a, b
cpy x = t3 1ldc t6 = -1
add t4 = x, y cpy c = t6
cpy m = t4

—
sub t7 = a, b
cpy m = t7

add t8 = x, y
add t9 = ¢, d

* Availability of an expression E at point P
« DEFINITION: Along every path to P in the flow graph:
— E must be evaluated at least once
— no variables in E redefined after the last evaluation
* Observations: E may have different values on different paths

15-745: GCSE & Constants 2 Todd C. Mowry

Formulating the Problem

¢ Domain:
* abit vector, with
a bit for each textually unique expression in the program

* Forward or Backward?
¢ Llattice Elements?

* Meet Operator?
* check: commutative, idempotent, associative

¢ Partial Ordering

¢ Top?

* Bottom?

* Boundary condition: entry/exit node?
« Initialization for iterative algorithm?

Carnegie Mellon I

15-745: GCSE & Constants 3 Todd C. Mowry

Transfer Functions

* Can use the same equation as reaching definitions
* out[b] = gen[b] U (in[b] - kill[b])

« Start with the transfer function for a single instruction
* When does the instruction generate an expression?

* When does it kill an expression?

¢ Calculate transfer functions for complete basic blocks
* Compose individual instruction transfer functions

Carnegie Mellon [

15-745: GCSE & Constants 4 Todd C. Mowry

Composing Transfer Functions

* Derive the transfer function for an entire block

inl
i outl = genl U (in1 - kill1) = in2

out2 = gen2 U (in2 - kill2)

* Since outl = in2 we can simplify:
+ out2 =gen2 U ((gen1 U (in1 - kill1)) - kill2)
out2 = gen2 U (gen1 - kill2) U (in - (kill1 U kill2))
out2 =gen2 U (genl - kill2) U (inl - (kill2 U (kill1 - gen2)))

* Result
* gen=gen2U (genl-kill2)
kill = kill2 U (kill1 - gen2)

Carnegie Mellon [

15-745: GCSE & Constants 5 Todd C. Mowry

|
. Eliminating CSEs

* Available expressions (across basic blocks)
— provides the set of expressions available at the start of a block

¢ Value Numbering (within basic block)

— Initialize Values table with available expressions

* If CSE is an “available expression”, then transform the code
— Original destination may be:
+ atemporary register
¢ overwritten
« different from the variables on other paths

— One solution: Copy the expression to a new variable at each evaluation
reaching the redundant use

15-745: GCSE & Constants 6 Todd C. Mowry

Example Revisited
add tl = x, y

add t2 = ¢, d

/\

ldec t3 =0 sub t5 = a, b
cpy x = t3 1ldc t6 = -1
add t4 = x, y cpy ¢ = t6
cpy m = t4
\
sub t7 = a, b
cpy m = t7

Carnegie Mellon I

15-745: GCSE & Constants 7 Todd C. Mowry

Il Limitation: Textually Identical Expressions

* Commutative operations

addt1=x,y| |addt2=y,x

— sort the operands

Carnegie Mellon [

15-745: GCSE & Constants 8 Todd C. Mowry

Further Improvements

* Examples
— Expressions with more than two operands

add t1 = x, y add t3 =y, x
add t2 = t1, z add t4 = t3, z

— =

add t5 = x, y
add t6 = t5, z

— Textually different expressions may be equivalent
add t1 = x, y
beq tl1, t2, L1
cCpY Z = X
add t3 =z, y

15-745: GCSE & Constants 9 Todd C. Mowry

|
Another Example

x =1

y=1
b

x=x+1

y=y+1

x=x+1

y=y+1

15-745: GCSE & Constants 10 Todd C. Mowry

Summary

Reaching Definitions Available Expressions
Domain Sets of definitions Sets of expressions
Transfer function f,(x)
Generate U Propagate
direction of function forward: out([b] = f,(in[b]) forward: out[b] = f,(in[b])
Generate Gen,: exposed definitions Gen,: expressions evaluated
Propagate in[b]-Kill,: definitions killed in[b]-Kill,: expressions killed
Meet operation U (in[b]= U out[predecessors]) N (in[b]= N out[predecessors])
Initialization outlentry] = & outlentry] = &

outlb] = @& out[b] = all expressions

Carnegie Mellon I
15-745: GCSE & Constants 11 Todd C. Mowry

|
Ill. Constant Propagation/Folding

* At every basic block boundary, for each variable v
» determine if v is a constant
« if so, what is the value?

Carnegie Mellon [

15-745: GCSE & Constants 12 Todd C. Mowry

Semi-lattice Diagram

— Finite domain?
— Finite height?

15-745: GCSE & Constants 13 Todd C. Mowry

Equivalent Definition

* Meet Operation:

vl v2 vlaAv2

undef

undef o

NAC

undef

c
1
<

NAC

undef

NAC .

NAC

— Note: undef A c2 = c2!

15-745: GCSE & Constants 14 Todd C. Mowry

Example
x =2
p=x

Carnegie Mellon I

15-745: GCSE & Constants 15 Todd C. Mowry

Transfer Function

* Assume a basic block has only 1 instruction
¢ LetIN[b,x], OUT[b,x]

— be the information for variable x at entry and exit of basic block b

* OUT[entry, x] = undef, for all x.
* Non-assignment instructions: OUT[b,x] = IN[b,x]

* Assignment instructions: (next page)

Carnegie Mellon [

15-745: GCSE & Constants 16 Todd C. Mowry

|
Constant Propagation (Cont.)

* Letan assignment be of the form x; = x, +x,
* “+” represents a generic operator
* OUT[b,x] = IN [b,x], if x = x;
IN[b,x,] IN[b,x,] OUT[b,x,]

undef

undef
)

NAC

undef

Cy I

NAC

undef

NAC o

NAC

¢ Use: x <yimplies f(x) < f(y) to check if framework is monotone

* vy IS vy) vy, DS VD)

Carnegie Mellon [

15-745: GCSE & Constants 17 Todd C. Mowry

Distributive?

15-745: GCSE & Constants 18 Todd C. Mowry

Summary of Constant Propagation

* A useful optimization
* lllustrates:
— abstract execution
— aninfinite semi-lattice
— anon-distributive problem

Carnegie Mellon I

15-745: GCSE & Constants 19 Todd C. Mowry

]
Other Optimizations

¢ Copy Propagation:

* Dead Code Elimination:

Carnegie Mellon [

15-745: GCSE & Constants 20 Todd C. Mowry

