Lectures 26-27
Compiler Algorithms for Prefetching Data

I. Prefetching for Arrays

IT. Prefetching for Recursive Data Structures

Reading: ALSU 11.11.4
Advanced readings (optional):

T.C. Mowry, M. S. Lam and A. Gupta. "Desigh and Evaluation of a Compiler Algorithm for
Prefetching.” In Proceedings of ASPLOS-V, Oct. 1992, pp. 62-73.

C.-K. Luk and T. C. Mowry. "Compiler-Based Prefetching for Recursive Data Structures.”
In Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233.

Todd C. Mowry 15-745: Data Prefetching 1

The Memory Latency Problem

=y
o
©

= Processors
= Memory

Speed (Hz)

108

107

106

105
79 81 83 85 87 89 91 93 95 97 99
Year
+ A processor speed > N memory speed
+ caches are not a panacea
Carnegie Mellon [JI
15-745: Data Prefetching 2 Todd C. Mowry

Uniprocessor Cache Performance on Scientific Code

memory access st
instructions

120

Normalized Execution Time

CFFT2D BTRIX EMIT TOMCATV

+ Applications from SPEC, SPLASH, and NAS Parallel.

* Memory subsystem typical of MIPS R4000 (100 MHz):
— 8K/ 256K direct-mapped caches, 32 byte lines
— miss penalties: 12 / 75 cycles

+ 8 of 13 spend > 50% of time stalled for memory

Carnegie Mellon [

15-745: Data Prefetching 3 Todd C. Mowry

Prefetching for Arrays: Overview

+ Tolerating Memory Latency
+ Prefetching Compiler Algorithm and Results

+ Implications of These Results

Carnegie Mellon [JI

15-745: Data Prefetching 4 Todd C. Mowry

|
Coping with Memory Latency

Reduce Latency:
— Locality Optimizations
* reorder iterations to improve cache reuse

Tolerate Latency:

— Prefetching
* move data close to the processor before it is needed

Carnegie Mellon [

15-745: Data Prefetching 5 Todd C. Mowry

|
Tolerating Latency Through Prefetching

i P i ith P i
Prefetch A —>

Time Prefetch B —>
l Fetch A T

J_ Fetch B
Load A —> Load A —> J_

T Load B —>

Fetch B I Executing Instructions
I Stalled Waiting for Data

+ overlap memory accesses with computation and other accesses

Carnegie Mellon [JI

15-745: Data Prefetching 6 Todd C. Mowry

]
Types of Prefetching

Cache Blocks:
* (-) limited to unit-stride accesses

Nonblocking Loads:
* (-) limited ability to move back before use

Hardware-Controlled Prefetching:
+ (-) limited fo constant-strides and by branch prediction
* (+) no instruction overhead

Software-Controlled Prefetching:
+ (-) software sophistication and overhead
+ (+) minimal hardware support and broader coverage

Carnegie Mellon [

15-745: Data Prefetching 7 Todd C. Mowry

]
Prefetching Research Goals

+ Domain of Applicability

+ Performance Improvement
— maximize benefit
— minimize overhead

Carnegie Mellon [JI

15-745: Data Prefetching 8 Todd C. Mowry

Prefetching Concepts

possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache

effective if data is in the cache when later referenced

Analysis: what to prefetch
— maximize coverage factor
— minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches
— maximize effectiveness
— minimize overhead per prefetch

Carnegie Mellon [

15-745: Data Prefetching 9 Todd C. Mowry

Reducing Prefetching Overhead

+ instructions to issue prefetches
+ extra demands on memory system

Hit Rates for Array Accesses
100

80

Hit Rate %

60
40
20

0

Benchmarks

+ important to minimize unnecessary prefetches

Carnegie Mellon [JI

15-745: Data Prefetching 10 Todd C. Mowry

Compiler Algorithm

Analysis: what to prefetch
+ Locality Analysis

Scheduling: when/how to issue prefetches
+ Loop Splitting
+ Software Pipelining

Carnegie Mellon [

15-745: Data Prefetching 1 Todd C. Mowry

Steps in Locality Analysis

1. Find data reuse
— if caches were infinitely large, we would be finished
2. Determine “localized iteration space”

— set of inner loops where the data accessed by an iteration is
expected to fit within the cache

3. Find data locality:
— reuse N localized iteration space = locality

Carnegie Mellon [JI

15-745: Data Prefetching 12 Todd C. Mowry

|
Data Locality Example

for i = 0 to 2

for j = 0 to 100 O Hit
A[il[j] = B[31[0] + B[j+1][0]; @ Miss

A[i][]] B[j+1][0] B[j]1[0]

ie0oe0e0eo0 *o0oo0o0o0o0o0o *oooocooo0o0
0000000 00000000 ©0O0O0O0OO00O0O
00000000 00000000 00000000

J J J

Spatial Temporal Group

Carnegie Mellon [

15-745: Data Prefetching 13 Todd C. Mowry

|
Reuse Analysis: Representation

for i = 0 to 2
for j = 0 to 100
A[i][3j] = BIjI[0] + B[3+1][0];

* Map nloop indices into d array indices via array indexing function:

f@ =Hr+¢

ALII[G] = A([cl) ?H;]J“[gb
@ = o([93][1]+[3))
ot = 5([8 3][5]+[3])

15-745: Data Prefetching 14 Todd C. Mowry

]
Finding Temporal Reuse

+ Temporal reuse occurs between iterations 71and 72 whenever:
Hiy 4+ &= His+ ¢
HGp—7) =0

+ Rather than worrying about individual values of 71and 72, we say
that reuse occurs along direction vector 7 when:

H(7") =0

+ Solution: compute the nullspace of H

Carnegie Mellon [

15-745: Data Prefetching 15 Todd C. Mowry

]
Temporal Reuse Example

for i = 0 to 2

for j = 0 to 100 /

A[il[j] = B[J1[0]1 + B[j+1]1[0];
+ Reuse between iterations (iy,j,) and (i,.j,) whenever:
o1 1 0 1][4 1
2olltlela]=[e][]+ o]
01 i1p—i2 | _ | O
00]|j1i—d2] |O
+ True whenever j; = j,, and regardless of the difference between
iyand i,.

01
— i.e. whenever the difference lies along the nullspace of [00]
which is span{(1,0)} (i.e. the outer loop).

Carnegie Mellon [JI

15-745: Data Prefetching 16 Todd C. Mowry

Localized Iteration Space

+ Given finite cache, when does reuse result in locality?

for i = 0 to 2 for i = 0 to 2
for j =0 to 8 for j = 0 to 1000000

A[i][3] = B[31[0] + B[j+1][0]; A[i][3j] = B[3][0] + B[3+1][0];
100000000 ioooo\0o0o0o
B[j+1]1[0] 000000 O0OO B[j+1][0] e e @e@(@@O0@O@
00000000 oooo0o\e000
j j

Localized: both i and j loops Localized: j loop only

(i.e. span{(1,0),(0,1)}) (i.e. span{(0,1)})

» Localized if accesses less data than effective cache size

Carnegie Mellon [

15-745: Data Prefetching 17 Todd C. Mowry

|
Computing Locality

+ Reuse Vector Space N Localized Vector Space = Locality Vector Space

+ Example: for i = 0 to 2

for j = 0 to 100 /

A[i][3] = B[JI[0] + B[j+1]1[0];

+ If both loops are localized:
— span{(1,0)} N span{(1,0),(0,1)} = span{(1,0)}
— i.e. tfemporal reuse does result in temporal locality

+ If only the innermost loop is localized:
— span{(1,0)} N span{(0,1)} = span{}
— i.e. no femporal locality

Carnegie Mellon [JI

15-745: Data Prefetching 18 Todd C. Mowry

]
Prefetch Predicate

Locality Type Miss Instance Predicate
None Every Iteration True
Temporal First Iteration i=0
Spatial Every | iterations (Amodl)=0
(I = cache line size)
—LEXO"‘ le: for i = 0 to 2
for j = 0 to 100
A[i][3] = B[31[0] + B[J+1]1[0];
Reference Locality Predicate
A[i]13] i - [rone (3 mod2)=0
3 spatial
B[j+1][0] i1 _ [temporal i=0
(] =[]

15-745: Data Prefetching

Carnegie Mellon [

Todd C. Mowry

]
Compiler Algorithm

Analysis: what to prefetch
+ Locality Analysis

Scheduling: when/how to issue prefetches
+ Loop Splitting
+ Software Pipelining

Carnegie Mellon [JI

15-745: Data Prefetching 20 Todd C. Mowry

|
Loop Splitting

+ Decompose loops to isolate cache miss instances
— cheaper than inserting IF statements

Locality Type Predicate Loop Transformation
None True None
Temporal i=0 Peel loop i
Spatial (imodl)=0 Unroll loop i by |

+ Apply transformations recursively for nested loops

+ Suppress transformations when loops become too large
- avoid code explosion

Carnegie Mellon [

15-745: Data Prefetching 21 Todd C. Mowry

|
Software Pipelining

Iterations Ahead = [Si-l

where /= memory latency, s = shortest path through loop body

Software Pipelined Loop

Original Loop (5 iterations ahead)
for (i = 0; i<100; i++) for (i = 0; i<5; i++) /* Prolog */
a[i] = 0; prefetch(&af[i]);

for (i = 0; i<95; i++) { /* Steady State*/
prefetch(&a[i+5]);
a[i] = 0;

}

for (i = 95; i<100; i++) /*Epilog */

a[i] =

Carnegie Mellon [JI

15-745: Data Prefetching 22 Todd C. Mowry

]
Example Revisited

Original Code Code with Prefetching
for (i = 0; i < 3; i+4) prefetch (&A[0][0]) ;
for (3 = 07 3 < 100; §+4+) for (3 =10; 3<6; 3 +=2) {
ALL1[3] = BI3110] + BI3+11[0]; preferen(ealylon:

prefetch (sB[+2][0]) ;
prefetch (sA[0] [3+1]) ;
}

i for (3 =0; j < 94; j +=2) {
O Cache Hit prefetch (sB[§+7][0]) ;
@ @ Cache Miss i=0— prefetch (sB([3+8] [0]) ;

prefetch (§A[0] [§+71) ;
A[0][3] = B[jI[0]+B[j+1][0];
A[0][3+1] = B[J+1][0]+B[j+2][0];

Ali][])
il onoeneo e s na,
A[0][J+1] = B[3+1][0]1+B[j+2][0];
0000000 T for (=15 i< 3; i+ (
0000000 prefereh(aAliI (O]
j prefetch (&A[i] [3+1])

for (3 =0; 3 < 94; j +=2) {
prefetch (6A[1] [3+71) ;

1
B[j+1][0] . ALi][3] = BI31[0] + B[3+1][0];
i J i>0 | MG =R a2 01
oooooooo for (j = 94; j < 100; j += 2) {
A[i]13] = BI31[0] + B[3+11[0];
00000000 A[i][3+1] = B[3+1]1[0] + B[j+2]1[0];
00000000) }
j
Carnegie Mellon [
15-745: Data Prefetching 23 Todd C. Mowry

]
Experimental Framework (Uniprocessor)

Architectural Extensions:

— Prefetching support:
* lockup-free caches
+ 16-entry prefetch issue buffer
« prefetfch directly into both levels of cache

— Contention:
* memory pipelining rate = 1 access every 20 cycles
« primary cache tag fill = 4 cycles

— Misses get priority over prefetches

Simulator:
— detailed cache simulator driven by pixified object code.

Carnegie Mellon [JI

15-745: Data Prefetching 24 Todd C. Mowry

|
Experimental Results (Dense Matrix Uniprocessor)

+ Performance of Prefetching Algorithm
— Locality Analysis
- Software Pipelining

» Interaction with Locality Optimizer

Carnegie Mellon [

15-745: Data Prefetching 25 Todd C. Mowry

|
Performance of Prefetching Algorithm

140 prefetch memory overhead
Imemory access stalls
120 instructions

Normalized Execution Time

NS NS NS NS

N S NS NS N S N S NS N S NS N S
MXM CHOLSKY GMTRY VPENTA OCEAN CG MG
CFFT2D BTRIX EMIT TOMCATV Is EP
(N = No Prefetching, S = Selective Prefetching)

+ memory stalls reduced by 50% o 90%
+ instruction and memory overheads typically low
+ 6 of 13 have speedups over 45%

Carnegie Mellon [JI

15-745: Data Prefetching 26 Todd C. Mowry

]
Effectiveness of Locality Analysis

memory access stalls

Iprefetch memory overhead
instructions

Normalized Execution Time

'S s I's s IS s I's s I's 1 'S
MXM CHOLSKY GMTRY VPENTA OCEAN CG MG
CFFT2D BTRIX EMIT TOMCATV 5] EP

(I = Indiscriminate Prefetching, S = Selective Prefetching)

Selective vs. Indiscriminate prefetching:
+ similar reduction in memory stalls

+ significantly less overhead

+ 6 of 13 have speedups over 20%

Carnegie Mellon [

15-745: Data Prefetching 27 Todd C. Mowry

]
Effectiveness of Locality Analysis (Continued)

Unnecessary Prefetches Coverage Factor

100 100
}% é Indiscriminate
S g0 < 80 Selective
© ©
jo) @
& 60 o 60

40 40

20 20

0 0

Benchmarks Benchmarks

+ fewer unnecessary prefetches
+ comparable coverage factor
+ reduction in prefetches ranges from 1.5 to 21 (average = 6)

Carnegie Mellon [JI

15-745: Data Prefetching 28 Todd C. Mowry

|
Effectiveness of Software Pipelining

g 10 Original Miss Breakdown [nopf-miss
£ 1204 pf-miss
8 [pf-hit
S 100 — — =
s u
& 80] . .
60
40
20
0
MXM CHOLSKY ~GMTRY VPENTA OCEAN cG MG
CFFT2D BTRIX EMIT TOMCATV 1S EP

+ Large pf-miss > ineffective scheduling
— conflicts replace prefetched data (CHOLSKY, TOMCATV)
— prefetched data still found in secondary cache

Carnegie Mellon [

15-745: Data Prefetching 29 Todd C. Mowry

|
Interaction with Locality Optimizer

o 100 prefetch memory overhea o 100 prefetch memory overhea
E 1004 I memory access stalls E 1001 I memory access stalls
- instructions - instructions
c c
S 80 S 8o} 79
3 3
e 60 - e 60 -
i 48 i 50
o 41 M 3
g al g al 40
© ©
E 20 E 20
o o
z z
0 N] N S 0 N E] N S
Original Locality-Optimized Original Locality-Optimized
GMTRY VPENTA
(Cache Blocking) (Loop Interchange)

+ locality optimizations reduce number of cache misses
+ prefetching hides any remaining latency
+ best performance through a combination of both

Carnegie Mellon [JI

15-745: Data Prefetching 30 Todd C. Mowry

]
Prefetching Indirections

for (i = 0; i<100; i++)
sum += A[index[i]];

Analysis: what to prefetch
— both dense and indirect references
— difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
— modification of software pipelining algorithm

Carnegie Mellon [

15-745: Data Prefetching 31 Todd C. Mowry

]
Software Pipelining for Indirections

Software Pipelined Loop

Original Loop (5 iterations ahead)
for (i = 0; i<100; i++) for (i = 0; i<5; i++) /* Prolog 1*/
sum += Al[index[i]]; prefetch (&index[i]) ;

for (i = 0; i<5; i++) { /*Prolog2*/
prefetch (&index[i+5]) ;
prefetch (&A[index[i]]) ;

}

for (i = 0; i<90; i++) { /* Steady State*/
prefetch (&index[i+10]) ;
prefetch(&A[index[i+5]]) ;
sum += A[index[i]];

}

for (i = 90; i<95; i++) { /*Epilog1*/
prefetch (&A[index[i+5]]);
sum += A[index[i]];

}

for (i = 95; i<100; i++) /*Epilog2*/
sum += A[index[i]];

Carnegie Mellon [JI

15-745: Data Prefetching 32 Todd C. Mowry

|
Indirection Prefetching Results

140 prefetch memory overhead
B memory access stalls
120 | instructions

100 JH00 100 100 92 100

80
60
40
20

Normalized Execution Time

N D | N D | N D 1 N D |
IS CG MP3D SPARSPA}

(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)

+ larger overheads in computing indirection addresses
+ significant overall improvements for IS and C6

Carnegie Mellon [

15-745: Data Prefetching 33 Todd C. Mowry

|
Summary of Results

Dense Matrix Code:
— eliminated 50% to 90% of memory stall time
— overheads remain low due to prefetching selectively
— significant improvements in overall performance (6 over 45%)

Indirections, Sparse Matrix Code:
— expanded coverage to handle some important cases

Carnegie Mellon [JI

15-745: Data Prefetching 34 Todd C. Mowry

]
Prefetching for Arrays: Concluding Remarks

+ Demonstrated that software prefetching is effective
— selective prefetching to eliminate overhead
— dense matrices and indirections / sparse matrices
— uniprocessors and multiprocessors

* Hardware should focus on providing sufficient memory bandwidth

Carnegie Mellon [

15-745: Data Prefetching 35 Todd C. Mowry

Part IT: Prefetching for Recursive Data Structures

Carnegie Mellon [JI

15-745: Data Prefetching 36 Todd C. Mowry

Recursive Data Structures

+ Examples:
- linked lists, trees, graphs, ...
+ A common method of building large data structures
— especially in non-numeric programs
+ Cache miss behavior is a concern because:
— large data set with respect to the cache size
— temporal locality may be poor
— little spatial locality among consecutively-accessed nodes

Goal:
+ Automatic Compiler-Based Prefetching for Recursive Data Structures

Carnegie Mellon [

15-745: Data Prefetching 37 Todd C. Mowry

Overview

* Challenges in Prefetching Recursive Data Structures
+ Three Prefetching Algorithms
+ Experimental Results

+ Conclusions

Carnegie Mellon [JI

15-745: Data Prefetching 38 Todd C. Mowry

]
Scheduling Prefetches for Recursive Data Structures

currently visiting wantto prefetch
o
L X X] L X X]
p=&ng L
while (p){ load *p here

work(p->data), ——— |
workip->data,

p = p->next; — ——

Our Goal: fully hide latency
— thus achieving fastest possible computation rate of 1/W

+ eg., if L=3W, we must prefetch 3 nodes ahead to achieve this

Carnegie Mellon [

15-745: Data Prefetching 39 Todd C. Mowry

]
Performance without Prefetching

while (p)}{
work(p->data);
p = p->next;

computation rate = 1/ (L+W)

Carnegie Mellon [JI

15-745: Data Prefetching 40 Todd C. Mowry

10

Prefetching One Node Ahead

while (p {
pflp->next);
work(p->data);
p = p->next;

vlsiting.é
pre fetc hﬂ
v pf(pi->next)

&
¢

-

—p» data dependence

+ Computation is overlapped with memory accesses

computation rate = 1/L

15-745: Data Prefetching 41 Todd C. Mowry

Prefetching Three Nodes Ahead

while (p){
pf(p->next->next->next);

work(p->data);

visiting p = p->next;

prefetci@

pf(p;->next->next->next)

o o0

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:
+ any scheme which follows the pointer chain is limited to a rate of 1/L

Carnegie Mellon [JI

15-745: Data Prefetching 42 Todd C. Mowry

]
Our Goal: Fully Hide Latency

while (p){
pf(&n;,3);
work(p->data);
p = p->next;

visiting

prefetch @
>
v
L]
.
.

+ achieves the fastest possible computation rate of 1/W

Carnegie Mellon [

15-745: Data Prefetching 43 Todd C. Mowry

Overview

+ Challenges in Prefetching Recursive Data Structures

+ Three Prefetching Algorithms
— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

» Experimental Results

+ Conclusions

Carnegie Mellon [JI

15-745: Data Prefetching 44 Todd C. Mowry

11

|
QOvercoming the Pointer-Chasing Problem

Key:
* n; needs to know &n;,q without referencing the d-1 intermediate nodes

Our proposals:
+ use existing pointer(s) in n; fo approximate &n;4
— Greedy Prefetching

an existing pointer
-9 ® 8|

a new pointer
e

+ add new pointer(s) to n; to approximate &n;.4 G_ I @
— History-Pointer Prefetching

A
+ compute &n,4 directly from &n; (no ptr deref) []
— History-Pointer Prefetching o ® o

A:Add ressgenerating func tion

Carnegie Mellon [

15-745: Data Prefetching 45 Todd C. Mowry

Greedy Prefetching

+ Prefetch all neighboring nodes (simplified definition)
— only one will be followed by the immediate control flow
— hopefully, we will visit other neighbors later

preorder (treeNode * t) {
if (t !'= NULL){
pf(t->left) ;
pf (t->right) ;
process (t->data) ;
preorder (t->left) ;
preorder (t->right) ;

+ Reasonably effective in practice
+ However, little control over the prefetching distance

Carnegie Mellon [JI

15-745: Data Prefetching 46 Todd C. Mowry

History-Pointer Prefetching

* Add new pointer(s) to each node
— history-pointers are obtained from some recent traversal

—po "9 :) 1

i 2

' \ 4

youngest ' 8

b 1 9

= ' 5

FIFO (d=3) JiT] ¢ 10
5 1

desi L ! o 1

oldest

: Nl

e ! 000
I

order

2
@

i
- existing history-pointer @ currently visiting

/\NV\N» history-pointer being added

+ Trade space & time for better control over prefetching distances

Carnegie Mellon [

15-745: Data Prefetching 47 Todd C. Mowry

]
Data-Linearization Prefetching

* No pointer dereferences are required
+ Map nodes close in the traversal to contiguous memory

preorder
traversal

prefetching distance= 3 nodes —————— prefetch
Carnegie Mellon [JI
15-745: Data Prefetching 48 Todd C. Mowry

12

|
Summary of Prefetching Algorithms

Greedy History-Pointer Data-Linearization
Control over little more precise more precise
Prefetching Distance
Applicability to any RDS revisited; changes | must have a major
Recursive Data only slowly traversal order;
Structures changes only slowly
Overhead in none space + time none in practice
Preparing Prefetch
Addresses
Ease of relatively more difficult more difficulty
Implementation straightforward

+ Greedy prefetching is the most widely applicable algorithm
— fully implemented in SUIF

Carnegie Mellon [

15-745: Data Prefetching 49 Todd C. Mowry

Overview

* Challenges in Prefetching Recursive Data Structures
+ Three Prefetching Algorithms
+ Experimental Results

+ Conclusions

Carnegie Mellon [JI

15-745: Data Prefetching 50 Todd C. Mowry

]
Experimental Framework

Benchmarks
+ Olden benchmark suite
— 10 pointer-intensive programs
— covers a wide range of recursive data structures

Simulation Model
+ Detailed, cycle-by-cycle simulations
+ MIPS R10000-like dynamically-scheduled superscalar

Compiler
+ Implemented in the SUIF compiler

* Generates fully functional, optimized MIPS binaries

Carnegie Mellon [

15-745: Data Prefetching 51 Todd C. Mowry

]
Implementation of Our Prefetching Algorithms

Automated in the SUIF compiler

Schedule
Greedy
Prefetches

Recognize ! Schedule
RDS History-Pointer
Accesses | Prefetches

Schedule
Data-Linearization
Prefetches

- insert prefetches at the earliest
possible places

* minimize prefetching overhead

Carnegie Mellon [JI

15-745: Data Prefetching 52 Todd C. Mowry

« identify RDS types
« find recurrent pointer updates in
loops and recursive procedures

13

|
Performance of Compiler-Inserted Greedy Prefetching

1016 1012

100 - - 999 99.8 99.4 %6
L IR RILEEE E
B =u P
2 798
| i

60

Normalized Execution Time

0 G o G 0 G 0 G o G o G 0 G 0 G 0 G 0 G
mst bisort power em3d voronoi bh tsp perimeter treeadd health

O = Original
G = Compiler-Inserted Greedy Prefetching

» Eliminates much of the stall time in programs with large load stall
penalties

— half achieve speedups of 4% to 45%

Carnegie Mellon [

15-745: Data Prefetching 53 Todd C. Mowry

]
Coverage Factor

IS @ @ 2
S 3 3 3

% of Original Load D-Cache Misses
5

o

bisort em3d _bh perimeter health
mst power voronoi tsp treeadd

[l nopf_miss = original D-cache misses that are not prefetched
pf_miss = original D-cache misses that are prefetched but remain misses
. pf_hit = original D-cache misses that are prefetched and then hit in the D-cache

+ coverage factor = pf_hit + pf_miss
+ 7 out of 10 have coverage factors > 60%

— em3d, power, voronoi have many array or scalar load misses
+ small pf_miss fractions > effective prefetch scheduling

Carnegie Mellon [JI

15-745: Data Prefetching 54 Todd C. Mowry

Unnecessary Prefetches

100 -

65656565

59595959
54

| 48484848 49

@
S

40 ag3s 41414141

2t 2929

% of PF that Hit in D-Cache
Q

111111 1

100999590 100999590 100999590 100999590 100999590 10099 SS90 100999590 10099 9590 100999590 10099 95 S0

mst bisort power em3d voronoi bh tsp perimetertreecadd health
100 = all unnecessary dynamic pfs éﬁ 95
.99 = exclude all static pfs with hit rates > 99% . 90

+ % dynamic pfs that are unnecessary because the data is in the D-cache
* 4 have >80% unnecessary prefetches
+ Could reduce overhead by eliminating static pfs that have high hit rates

Carnegie Mellon [

15-745: Data Prefetching 55 Todd C. Mowry

]
Reducing Overhead Through Memory Feedback

120

100.0 1926 400.0 992 100.0 99.5 990 1000

100 = 8 969 96.3 963 e e g 962 Een
929 929 929
= II. = 239 29 29

©
0

©

Normalized Execution Time

G FO9FO5F90 G F99F95F90 G FI9FO5F90 G F99 F95F90
perimeter treeadd bisort tsp

G = greedy prefetching
Fx = greedy prefetching where static pfs with
hit rate > xx% are climinated

+ Eliminating static pfs with hit rate >95% speeds them up by 1-8%
+ However, eliminating useful prefetches can hurt performance
* Memory feedback can potentially improve performance

Carnegie Mellon [JI

15-745: Data Prefetching 56 Todd C. Mowry

14

|
Performance of History-Pointer Prefetching

[}

€ 100 100.0 load s

= store

s inst st

= 80 busy

3 68.6

] O = original

w % 49.0 G = greedy prefetching
K : H = history-pointer prefetching
N4

©

£

=

o 20

=z

Health
+ Applicable because a list structure does not change over time
+ 407% speedup over greedy prefetching through:
— better miss coverage (64% -> 100%)
— fewer unnecessary prefetches (41% -> 29%)
+ Improved accuracy outweighs increased overhead in this case

Carnegie Mellon [

15-745: Data Prefetching 57 Todd C. Mowry

|
Performance of Data-Linearization Prefetching

40

g 100.0 100.0 load

= 100 store

S ﬁ 814 inst

g w . 798 M busy

2 . 67.6 0 = original

& 60 . G = greedy prefetching
s D = data-linearization prefetching
N

©

£

£

o

z

20

o

perimeter treeadd

+ Creation order equals major traversal order in treeadd & perimeter
— hence data linearization is done without data restructuring
* 9% and 18% speedups over greedy prefetching through:
— fewer unnecessary prefetfches:
* 94%->78% in perimeter, 87%->81% in treeadd
— while maintaining good coverage factors:
+ 100%->80% in perimeter, 100%->93% in treeadd
Carnegie Mellon [JI

15-745: Data Prefetching 58 Todd C. Mowry

]
Conclusions

+ Propose 3 schemes to overcome the pointer-chasing problem:
— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

+ Automated greedy prefetching in SUIF
— improves performance significantly for half of Olden

— memory feedback can further reduce prefetch overhead

+ The other 2 schemes can outperform greedy in some situations

Carnegie Mellon [

15-745: Data Prefetching 59 Todd C. Mowry

15

