Lecture 25
Memory Hierarchy Optimizations &
Locality Analysis

CS745: Memory Hierarchy Optimizations Todd C. Mowry

Caches: A Quick Review

* How do they work?
+ Why do we care about them?
+ What are typical configurations today?

+ What are some important cache parameters that will affect
performance?

CS745: Memory Hierarchy Optimizations -2- Todd C. Mowry

Optimizing Cache Performance

+ Things to enhance:
+ temporal locality
- spatial locality

+ Things to minimize:
- conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

CS745: Memory Hierarchy Optimizations -3- Todd C. Mowry

Two Things We Can Manipulate

+ Time:
+ When is an object accessed?

* Space:
+ Where does an object exist in the address space?

How do we exploit these two levers?

CS745: Memory Hierarchy Optimizations -4- Todd C. Mowry

Time: Reordering Computation

« What makes it difficult to know when an object is accessed?

* How can we predict a better time to access it?
What information is heeded?

« How do we know that this would be safe?

CS745: Memory Hierarchy Optimizations -5- Todd C. Mowry

Space: Changing Data Layout

+ What do we know about an object’s location?

+ scalars, structures, pointer-based data structures, arrays,
code, etc.

* How can we tell what a better layout would be?
+ how many can we create?

+ To what extent can we safely alter the layout?

CS745: Memory Hierarchy Optimizations -6- Todd C. Mowry

Types of Objects to Consider

» Scalars
» Structures & Pointers
* Arrays

CS745: Memory Hierarchy Optimizations -7- Todd C. Mowry

Scalars
+ Locals int x;
double y;
foo (int
- Globals oolint &)
int i;
* Procedure arguments x = a*i;
+ Is cache performance a concern here? }

» If so, what can be done?

CS745: Memory Hierarchy Optimizations -8- Todd C. Mowry

Structures and Pointers

struct {
+ What can we do here? int count;
+ within a node double velocity;
double i tia;
- across nodes ouble inertia
struct node *neighbors[N];
} node;

« What limits the compiler's ability to optimize here?

CS745: Memory Hierarchy Optimizations -9- Todd C. Mowry

Arrays
double A[N][N], B[N][N];

for i = 0 to N-1
for j = 0 to N-1
A[i][3] = BIjI[i];

+ usually accessed within loops nests
+ makes it easy to understand “time"

+ what we know about array element addresses:
+ start of array?
+ relative position within array

CS745: Memory Hierarchy Optimizations -10- Todd C. Mowry

Handy Representation: "Iteration Space"”

0000O0O0O0O0O0O0O00OO0OO
0000O0O0O0O0O0O0O00OO0OO

for i = 0 to N-1 0000O0O0O0O0O0O0O00OO0OO
for § = 0 to N-1 000000000000
A1) = B31a); 999000000000
0000O0O0O0O0O0O0O00OO0OO
0000O0O0O0O0O0O0O00OO0OO

00000000 00O0O

00000000 00O0O
000000000000

+ each position represents an iteration

CS745: Memory Hierarchy Optimizations -11- Todd C. Mowry

Visitation Order in Iteration Space

for i = 0 to N-1
for j = 0 to N-1
A[i]1[3] = BIJjI[il;

* Note: iteration space = data space

CS745: Memory Hierarchy Optimizations -12- Todd C. Mowry

When Do Cache Misses Occur?

for i =
for j
A[i][3]

A

ipooooo0o000
00000000
00000000
00000000
00000000
00000000
00000000

00000000

B[j1[i];

B

ioooooo000

O00000O0O0
O0O0O0O0O0OO0O
O000O00O0O
O0O0O0O0O0OO0O
O000O00O0O
O00000O0O0

00000000

CS745: Memory Hierarchy Optimizations -13- Todd C. Mowry

When Do Cache Misses Occur?

for i = 0 to N-1 100000000

for j = 0 to N-1 00000000
0O000000O
O00000O0O0
0O000000O
O00000O0O0
0O000000O
00000000

A[i+3][0] = i*j;

CS745: Memory Hierarchy Optimizations -14- Todd C. Mowry

Optimizing the Cache Behavior of Array Accesses

+ We need to answer the following questions:
+ when do cache misses occur?
- use “locality analysis"”

can we change the order of the iterations (or possibly data
layout) to produce better behavior?

+ evaluate the cost of various alternatives
+ does the new ordering/layout still produce correct results?
* use "dependence analysis"

CS745: Memory Hierarchy Optimizations -15- Todd C. Mowry

Examples of Loop Transformations

+ Loop Interchange
+ Cache Blocking

+ Skewing

+ Loop Reversal

(we will briefly discuss the first two)

CS745: Memory Hierarchy Optimizations -16- Todd C. Mowry

Loop Interchange

fori=0toN—1><Efarj—0toN—1
for j = 0 to N-1 for i = 0 to N-1

A[JI[i] = i*j; A[J1[i] = i*j;

*00000000 Jeoeoeoeo O Hit

00000000 - 0000000 @ Miss
00000000 Q0000000
o0000000 0000000
00000000 0000000
0000000 0000000
00000000 0000000
oo0oo000000 0000000
j i

« (assuming N is large relative to cache size)

CS745: Memory Hierarchy Optimizations -17- Todd C. Mowry

Cache Blocking (aka "Tiling")

—> for JJ = 0 to N-1 by B

for i = 0 to N-1 for i = 0 to N-1
for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
£(A[i],A[3]); £(A[i],A[3]);

Afli Alj] Ali Alj
ioooo0o0000 iooo0o0O0OO0OOO iopoo000000 iooo000O0OOO
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

j j j j

now we can exploit temporal locality

CS745: Memory Hierarchy Optimizations -18- Todd C. Mowry

Impact on Visitation Order in Iteration Space

—> for JJ = 0 to N-1 by B

for i = 0 to N-1 for i = 0 to N-1
for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
£(A[i],A[3]) £(a[i],A[3]);

J

CS745: Memory Hierarchy Optimizations -19- Todd C. Mowry

Cache Blocking in Two Dimensions

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B

for i = 0 to N-1 for i = 0 to N-1
for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
for k = 0 to N-1 for k = KK to max(N-1,KK+B-1)
cl[i k] += a[i,jI*b[], k]; cli, k] += a[i,jl1*b[], k]’

+ brings square sub-blocks of matrix "b" into the cache
+ completely uses them up before moving on

CS745: Memory Hierarchy Optimizations -20- Todd C. Mowry

Predicting Cache Behavior through "Locality Analysis”

+ Definitions:
* Reuse:
+ accessing a location that has been accessed in the past
+ Locality:
+ accessing a location that is now found in the cache

+ Key Insights
Locality only occurs when there is reusel
BUT, reuse does not nhecessarily result in locality.
* why not?

CS745: Memory Hierarchy Optimizations -21- Todd C. Mowry

Steps in Locality Analysis

1. Find data reuse
+ if caches were infinitely large, we would be finished
2. Determine "localized iteration space”

+ set of inner loops where the data accessed by an iteration is
expected to fit within the cache

3. Find data locality:
* reuse N localized iteration space => locality

CS745: Memory Hierarchy Optimizations -22- Todd C. Mowry

Types of Data Reuse/Locality

for i = 0 to 2

for j = 0 to 100 O Hit
A[i]1[3] = B[J1[0] + B[3j+1][0]; @ Miss

A[i][3] B[j+1][0] B[j1[0]
ieo0e0eoceo *oooooooo *oooooooo
0000000 00000000 ©0OO0O0OOOOO0O
00000000 00000000 00000000
j j j

Spatial Temporal Group

CS745: Memory Hierarchy Optimizations -23- Todd C. Mowry

Reuse Analysis: Representation

for i = 0 to 2
for j = 0 to 100
A[i][3j] = BI[j1[0] + B[3+1][0];

* Map nloop indices into d array indices via array indexing function:

f(@) = Hr+¢@

ALII[G] = A([é (1JH2]+[8D
swo = ([][] +[2])
st = o([3][] +[3])

CS745: Memory Hierarchy Optimizations -24- Todd C. Mowry

Finding Temporal Reuse

Temporal reuse occurs between iterations 71 and 7
Hvy +c=Hib+ ¢

whenever:
H(iy —12) =0

+ Rather than worrying about individual values of 71 and %2,
we say that reuse occurs along direction vector 7 when:

H(7) =0

Solution: compute the nullspace of H

Temporal Reuse Example

for i = 0 to 2
/

for j = 0 to 100
A[i]1[3]1 = B[31[0] + B[j+1][0];

+ Reuse between iterations (iy,j;) and (i,.j,) whenever:
Solli]+o]=1e o] [+ (6]

00|
35][nal=[8)
+ True whenever j; = j,, and regardless of the difference
(23]

between i; and i,.
+ i.e. whenever the difference lies along the nullspace of

which is span{(1,0)} (i.e. the outer loop).
CS745: Memory Hierarchy Optimizations -26- Todd C. Mowry

CS745: Memory Hierarchy Optimizations -25- Todd C. Mowry

More Complicated Example

for i = 0 to N-1 i
Q\: O Hit
@ Miss

for j = 0 to N-1
A[i+31[0] = i*j;

e[33111) SRRNRNNE

+ Nullspace of [é é]zspan{(l,-l)}.

_27-

CS745: Memory Hierarchy Optimizations

Carnegie Mellon [

Todd C. Mowry

Computing Spatial Reuse

+ Replace last row of Hwith zeros, creating H;
+ Find the nullspace of H,

+ Result: vector along which we access the same row

CS745: Memory Hierarchy Optimizations -28- Todd C. Mowry

Computing Spatial Reuse: Example

for i = 0 to 2

i
00000000 [on
00000000 g
0000000

for j = 0 to 100
A[i][3j] = B[J1[0] + B[j+1][0];

o = (3 9] [1]+[2))
che [39)]

+ Nullspace of H, = span{(0,1)}
* i.e. access same row of A[i] [j] along inner loop

CS745: Memory Hierarchy Optimizations -29- Todd C. Mowry

Computing Spatial Reuse: More Complicated Example

for i = 0 to N-1 i
for j = 0 to N-1 O Hit
A[i+3] = i*j; @ Miss
Ali+jl = A 11 l
s =a([1 1][5] +[0]) \
- H. =[0o0] g\o
j
+ Nullspace of H = span{(1,-1)} N
+ Nullspace of H, = span{(1,0),(0,1)} T —
Carnegie Mellon [JI
CS745: Memory Hierarchy Optimizations -30- Todd C. Mowry

Group Reuse

for i = 0 to 2
for j = 0 to 100
A[i][3] = B[31[0] + B[Jj+1]1[0];

N 7

* Only consider "uniformly generated sets”
+ index expressions differ only by constant terms
* Check whether they actually do access the same cache line
* Only the "leading reference" suffers the bulk of the cache misses

CS745: Memory Hierarchy Optimizations -31- Todd C. Mowry

Localized Iteration Space

+ Given finite cache, when does reuse result in locality?

for i = 0 to 2 for i = 0 to 2
for j =0 to 8 for j = 0 to 1000000

A[il[j] = B[3]1[0] + B[3+1][0]; A[il[j] = B[3]1[0] + B[j+11[0];
io00000000 iocoool\0o0oo
B[j+1]1[0] 00000000 B[j+1][0] e e @ @f/00@@0@
oc0000000 oooo0o\0oo0o0o0
j 3

Localized: both i and j loops Localized: j loop only

(i.e. span{(1,0),(0,1)}) (i.e. span{(0,1)})

» Localized if accesses less data than effective cache size

CS745: Memory Hierarchy Optimizations -32- Todd C. Mowry

Computing Locality

+ Reuse Vector Space N Localized Vector Space = Locality Vector Space

+ Example: for i = 0 to 2

for j = 0 to 100 /

A[i][3] = B[JI[0] + B[j+1]1[0];

« If both loops are localized:
+ span{(1,0)} N span{(1,0),(0,1)} = span{(1,0)}
* i.e. femporal reuse does result in temporal locality

« If only the innermost loop is localized:
+ span{(1,0)} N span{(0,1)} = span{}
* i.e. no femporal locality

CS745: Memory Hierarchy Optimizations -33- Todd C. Mowry

