Lecture 25

Memory Hierarchy Optimizations & Locality Analysis
Caches: A Quick Review

• How do they work?
• Why do we care about them?
• What are typical configurations today?
• What are some important cache parameters that will affect performance?
Optimizing Cache Performance

- Things to enhance:
 - temporal locality
 - spatial locality

- Things to minimize:
 - conflicts (i.e. bad replacement decisions)

What can the compiler do to help?
Two Things We Can Manipulate

- **Time:**
 - When is an object accessed?

- **Space:**
 - Where does an object exist in the address space?

How do we exploit these two levers?
Time: Reordering Computation

• What makes it difficult to know *when* an object is accessed?

• How can we predict a *better time* to access it?
 • What information is needed?

• How do we know that this would be *safe*?
Space: Changing Data Layout

- What do we know about an object's location?
 - scalars, structures, pointer-based data structures, arrays, code, etc.

- How can we tell what a better layout would be?
 - how many can we create?

- To what extent can we safely alter the layout?
Types of Objects to Consider

- Scalars
- Structures & Pointers
- Arrays
Scalars

- Locals

- Globals

- Procedure arguments

- Is cache performance a concern here?
- If so, what can be done?

```c
int x;
double y;
foo(int a){
    int i;
    ...
    x = a*i;
    ...
}
```
Structures and Pointers

• What can we do here?
 • within a node
 • across nodes

```c
struct {
  int count;
  double velocity;
  double inertia;
  struct node *neighbors[N];
} node;
```

• What limits the compiler’s ability to optimize here?
Arrays

double A[N][N], B[N][N];
...
for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

- usually accessed within loops nests
 - makes it easy to understand “time”
- what we know about array element addresses:
 - start of array?
 - relative position within array
Handy Representation: “Iteration Space”

for \(i = 0 \) to \(N-1 \)
 for \(j = 0 \) to \(N-1 \)
 \(A[i][j] = B[j][i] \);

• each position represents an iteration
Visitation Order in Iteration Space

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $A[i][j] = B[j][i]$;

- Note: iteration space ≠ data space
When Do Cache Misses Occur?

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[A[i][j] = B[j][i]; \]
When Do Cache Misses Occur?

for \(i = 0 \) to \(N-1 \)
\[
\text{for } j = 0 \text{ to } N-1
\]
\[
A[i+j][0] = i \times j;
\]
Optimizing the Cache Behavior of Array Accesses

- We need to answer the following questions:
 - when do cache misses occur?
 - use "locality analysis"
 - can we change the order of the iterations (or possibly data layout) to produce better behavior?
 - evaluate the cost of various alternatives
 - does the new ordering/layout still produce correct results?
 - use "dependence analysis"
Examples of Loop Transformations

- Loop Interchange
- Cache Blocking
- Skewing
- Loop Reversal
- ...

(we will briefly discuss the first two)
Loop Interchange

for $i = 0$ to $N-1$
for $j = 0$ to $N-1$
 $A[j][i] = i \times j$;

(assuming N is large relative to cache size)
Cache Blocking (aka “Tiling“)

for $i = 0$ to $N-1$
for $j = 0$ to $N-1$
 $f(A[i], A[j])$

for $JJ = 0$ to $N-1$ by B
 for $i = 0$ to $N-1$
 for $j = JJ$ to $\max(N-1, JJ+B-1)$
 $f(A[i], A[j])$

now we can exploit temporal locality
Impact on Visitation Order in Iteration Space

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $f(A[i], A[j]);$

for $JJ = 0$ to $N-1$ by B
 for $i = 0$ to $N-1$
 for $j = JJ$ to max($N-1, JJ+B-1$)
 $f(A[i], A[j]);$
Cache Blocking in Two Dimensions

for $JJ = 0$ to $N-1$ by B
for $KK = 0$ to $N-1$ by B
for $i = 0$ to $N-1$
for $j = JJ$ to max($N-1, JJ+B-1$)
for $k = KK$ to max($N-1, KK+B-1$)
c[i, k] += a[i, j]*b[j, k];

• brings square sub-blocks of matrix "b" into the cache
• completely uses them up before moving on
Predicting Cache Behavior through “Locality Analysis”

- Definitions:
 - **Reuse**: accessing a location that has been accessed in the past
 - **Locality**: accessing a location that is now found in the cache

- Key Insights
 - Locality only occurs when there is reuse!
 - BUT, reuse does not necessarily result in locality.
 - why not?
Steps in Locality Analysis

1. Find data reuse
 • if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
 • set of inner loops where the data accessed by an iteration is expected to fit within the cache

3. Find data locality:
 • reuse \(\cap \) localized iteration space \(\Rightarrow \) locality
Types of Data Reuse/Locality

for $i = 0$ to 2
for $j = 0$ to 100

Spatial Temporal Group
Reuse Analysis: Representation

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

- Map n loop indices into d array indices via array indexing function:

$$\vec{f}(\vec{\nu}) = H\vec{\nu} + \vec{c}$$

- $A[i][j] = A \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$

- $B[j][0] = B \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$

- $B[j+1][0] = B \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$
Finding Temporal Reuse

- Temporal reuse occurs between iterations \vec{v}_1 and \vec{v}_2 whenever:
 $$H\vec{v}_1 + \vec{c} = H\vec{v}_2 + \vec{c}$$
 $$H(\vec{v}_1 - \vec{v}_2) = \vec{0}$$

- Rather than worrying about individual values of \vec{v}_1 and \vec{v}_2, we say that reuse occurs along direction vector \vec{r} when:
 $$H(\vec{r}) = \vec{0}$$

- Solution: compute the nullspace of H
Temporal Reuse Example

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

• Reuse between iterations \((i_1,j_1)\) and \((i_2,j_2)\) whenever:

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_1 \\
j_1
\end{bmatrix}
+ \begin{bmatrix}
1 \\
0
\end{bmatrix}
= \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_2 \\
j_2
\end{bmatrix}
+ \begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_1 - i_2 \\
j_1 - j_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

• True whenever \(j_1 = j_2\), and regardless of the difference between \(i_1\) and \(i_2\).
 • i.e. whenever the difference lies along the nullspace of \[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix},
\]
 which is \(\text{span}\{(1,0)\}\) (i.e. the outer loop).
More Complicated Example

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $A[i+j][0] = i \times j$;

$A[i+j][0] = A \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$

• Nullspace of $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \text{span}\{(1, -1)\}$.
Computing Spatial Reuse

- Replace last row of H with zeros, creating H_s
- Find the nullspace of H_s

Result: vector along which we access the same row
Computing Spatial Reuse: Example

for $i = 0$ to 2
 for $j = 0$ to 100

$A[i][j] = A \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$

- $H_s = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

- Nullspace of $H_s = \text{span}\{(0,1)\}$
 - i.e. access same row of $A[i][j]$ along inner loop
Computing Spatial Reuse: More Complicated Example

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $A[i+j] = i*j$;

$A[i+j] = A \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix}$

- $H_s = \begin{bmatrix} 0 & 0 \end{bmatrix}$
- Nullspace of $H = \text{span}\{(1,-1)\}$
- Nullspace of $H_s = \text{span}\{(1,0),(0,1)\}$
Group Reuse

for $i = 0$ to 2
 for $j = 0$ to 100

- Only consider “uniformly generated sets”
 - index expressions differ only by constant terms
- Check whether they actually do access the same cache line
- Only the “leading reference” suffers the bulk of the cache misses
Localized Iteration Space

- Given finite cache, when does reuse result in locality?

for $i = 0$ to 2
for $j = 0$ to 8
 $A[i][j] = B[j][0] + B[j+1][0];$

Localized: both i and j loops (i.e. span$\{(1,0),(0,1)\}$)

for $i = 0$ to 2
for $j = 0$ to 1000000
 $A[i][j] = B[j][0] + B[j+1][0];$

Localized: j loop only (i.e. span$\{(0,1)\}$)

- Localized if accesses less data than effective cache size
Computing Locality

- **Reuse Vector Space** ∩ **Localized Vector Space** ⇒ **Locality** Vector Space

- **Example:**
  ```
  for i = 0 to 2
      for j = 0 to 100
          A[i][j] = B[j][0] + B[j+1][0];
  ```

- **If both loops are localized:**
 - span{(1,0)} ∩ span{(1,0),(0,1)} ⇒ span{(1,0)}
 - i.e. temporal reuse does result in temporal locality

- **If only the innermost loop is localized:**
 - span{(1,0)} ∩ span{(0,1)} ⇒ span{}
 - i.e. no temporal locality