Lecture 25
Dynamic Code Optimization

. Motivation & Background

1. Compilation Policy

lll.  Partial Method Compilation
IV.  Partial Dead Code Elimination
V.  Escape Analysis

VI. Results

“Partial Method Compilation Using Dynamic Profile Information”,
John Whaley, OOPSLA 01

(Slide content courtesy of John Whaley & Monica Lam.)
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Scenario #1: Better Information for Offline Optimization

e Understanding common dynamic behaviors may help guide optimizations
— e.g., control flow, data dependences, input values

void foo(int A, int B) {
S~ S~ Whatare typical values of A, B?

while (..) {
if (A > B)<€
*p = 0,;,€ How often does *p==val[i]?
C =val[i] + D;e—_]
E += C - B;

How often is this condition true?

~ Is this loop invariant?

* Useful for speculative scheduling, cache optimizations, code specialization, etc.
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Profile-Based Optimization

1. Compile statically 2. Collect profile 3. Re-compile, using profile
(using typical inputs)
progl C inputl [ progl.c
[ execution

/ ( /nstrumented)

runme exe executlon
profile

runme.exe }/

[ runme_v2.exe }

* Collecting control-flow profiles is relatively inexpensive
— profiling data dependences, data values, etc., is more costly
* Limitations of this approach?
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Instrumenting Executable Binaries

1. Compile statically 2. Collect profile
(using typical inputs)

[ progl.c [ inputl
How to perform the

. / instrumentation?
*

runme.exe
(instrumented)

.....#--_.‘
execution
profile

1. The compiler could insert it directly

binary
instrumentation
tool

2. A binary instrumentation tool could modify the executable directly
— that way, we don’t need to modify the compiler
— compilers that target the same architecture (e.g., x86) can use the same tool
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Binary Instrumentation/Optimization Tools

e Unlike typical compilation, the input is a binary (not source code)
* One option: static binary-to-binary rewriting

[ runme.exe runme_modified.exe }

* Challenges (with the static approach):

— what about dynamically-linked shared libraries?
— if our goal is optimization, are we likely to make the code faster?
* acompiler already tried its best, and it had source code (we don’t)
— if we are adding instrumentation code, what about time/space overheads?
* instrumented code might be slow and bloated if we aren’t careful
e optimization may be needed just to keep these overheads under control

* Bottom line: the purely static approach to binary rewriting is rarely used
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Another Extreme: The Interpreter Approach

* One approach to dynamic code execution/analysis is an interpreter

— basic idea: a software loop that grabs, decodes, and emulates each instruction

while (stillExecuting) ({
inst = readInst (PC) ;
instInfo = decodeInst(inst);
switch (instInfo.opType) {
case binaryArithmetic: ..
case memorylLoad: ..

}
PC = nextPC(PC,instInfo) ;

}

e Advantages:

— also works for dynamic programming languages (e.g., Java)
— easy to change the way we execute code on-the-fly (SW controls everything)
* Disadvantages:

— runtime overhead!
* each dynamic instruction is emulated individually by software
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-
A Sweet Spot?

* |sthere a way that we can combine:
— the flexibility of an interpreter (analyzing and changing code dynamically); and
— the performance of direct hardware execution?

e Key insights:

— increase the granularity of interpretation
* instruetons =2 chunks of code (e.g., procedures, basic blocks)

— dynamically compile these chunks into directly-executed optimized code
» store these compiled chunks in a software code cache
e jump in and out of these cached chunks when appropriate
* these cached code chunks can be updated!

— invest more time optimizing code chunks that are clearly hot/important
e easy to instrument the code, since already rewriting it
* must balance (dynamic) compilation time with likely benefits
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Main Loop of Chunk-Based Dynamic Optimizer

while (stillExecuting) {
if (!'codeCompiledAlready(PC)) {
compileChunkAndInsertInCache (PC) ;

}
jumpIntoCodeCache (PC) ;

// compiled chunk returns here when finished
PC = getNextPC(..) ;

* This general approach is widely used:

— Java virtual machines
— dynamic binary instrumentation tools (Valgrind, Pin, Dynamo Rio)

— hardware virtualization
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Components in a Typical Just-In-Time (JIT) Compiler

E ------------- Dynamic COde -------
asrertn Optimizer """*\

3 i \
Input : “Interpreter” Compiled Code
Program Control Loop Cache (Chunks)

Cache Manager
(Eviction Policy)

e Cached chunks of compiled code run at hardware speed
— returns control to “interpreter” loop when chunk is finished
* Dynamic optimizer uses profiling information to guide code optimization
— as code becomes hotter, more aggressive optimization is justified
- replace the old compiled code chunk with a faster version
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II. Overview of Dynamic Compilation

* Interpretation/Compilation policy decisions
— Choosing what and how to compile

e Collecting runtime information

— Instrumentation
— Sampling

e Exploiting runtime information
— frequently-executed code paths
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Speculative Inlining

V-Table

Method 1 [
Method 2
Method 3
Method 4
Method 5 |

(l

e Virtual call sites are deadly
— kill optimization opportunities
— virtual dispatch (via indirect jumps) is expensive on modern CPUs
— very common in object-oriented code

* Speculatively inline the most likely call target (based on profile, class hierarchy)
— works well since many virtual call sites have only one actual target

I Carnegic Metion [N

15-745: Dynamic Compilation 14 Todd C. Mowry



l1l. Compilation Policy

— £ S
ATtotal =T (nexecutions T

compile improvement)

— If AT, is negative, our compilation policy decision was effective.

* Wecantryto:
— Reduce T, (faster compile times)
— Increase T, ovement (8€NErate better code)
— Focus on large N ... tions (COMpile hot spots)

e 80/20 rule: Pareto Principle
— 20% of the work for 80% of the advantage
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Latency vs. Throughput

e Tradeoff: startup speed vs. execution performance

Startup speed Execution performance
Interpreter Best Poor
‘Quick’ compiler Fair Fair
Optimizing compiler Poor Best

I Carnegic Metion [N

15-745: Dynamic Compilation 16 Todd C. Mowry



-]
Multi-Stage Dynamic Compilation System

Stage 1:

Stage 2:

Stage 3:

interpreted
code

when execution
count =t1 (e.g. 2000)

compiled
code

Execution count is the sum of
method invocations & back edges
executed.

when execution
count =t2 (e.g. 25000)

fully optimized
code
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Granularity of Compilation

. Compilation time is proportional to the amount of code being compiled.

. Many optimizations are not linear.

. Methods can be large, especially after inlining.

. Cutting inlining too much hurts performance considerably.

. Even “hot” methods typically contain some code that is rarely/never executed.
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Example: SpecJVM db

void read db(String £fn) {
int n = 0, act = 0; byte buffer[] = null;

try {
FileInputStream sif = new FileInputStream(£fn) ;

buffer = new byte[n];
Hot while ((b = sif.read(buffer, act, n-act))>0) {
— act = act + b;
loop }
sif.close() ;
if (act !'= n) {
/* lots of error handling code, rare */

}
} catch (IOException ioe) {

/* lots of error handling code, rare */

}
}
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Example: SpecJVM db

void read db(String £fn) {
int n = 0, act = 0; byte buffer[] = null;

try {
FileInputStream sif = new FileInputStream(£fn) ;

buffer = new byte[n];
while ((b = sif.read(buffer, act, n-act))>0) {

act = act + b;
}
sif.close () ; Lots of
if (act !'=n) { rare code!
/* lots of error handling code, rare */4_1

}
} catch (IOException ioe) {

/* lots of error handling code, rare */
} —

}
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Optimize hot “regions”, not methods

e Optimize only the most frequently executed segments within a method.
— Simple technique:
e any basic block executed during Stage 2 is considered to be hot.

* Beneficial secondary effect of improving optimization opportunities on the
common paths.
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Method-at-a-Time Strategy
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% of basic blocks executed

Actual Basic Blocks Executed
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Dynamic Code Transformations

e Compiling partial methods
e Partial dead code elimination
* Escape analysis
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V. Partial Method Compilation

1. Based on profile data, determine the set of rare blocks.
— Use code coverage information from the first compiled version
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Partial Method Compilation

2.  Perform live variable analysis.
— Determine the set of live variables at rare block entry points.

live: x,y,z
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Partial Method Compilation

3. Redirect the control flow edges that targeted rare blocks, and remove the rare
blocks.

to interpreter...
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Partial Method Compilation

4. Perform compilation normally.

— Analyses treat the interpreter transfer point as an unanalyzable method
call.
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Partial Method Compilation

5. Record a map for each interpreter transfer point.

— In code generation, generate a map that specifies the location, in registers
or memory, of each of the live variables.

— Maps are typically < 100 bytes

live: x,y,z

X:sp-4
I y:rl

|z:sp—8 |
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V. Partial Dead Code Elimination

 Move computation that is only live on a rare path into the rare block, saving
computation in the common case.
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Partial Dead Code Example

x =0; if (rare branch 1) {
if (rare branch 1) { x =0;
zZ =x +vy; zZ = x +vy;
} }
if (rare branch 2) { # if (rare branch 2) {
x = 0;

a=x+<+ z;
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V. Escape Analysis

e Escape analysis finds objects that do not escape a method or a thread.
— “Captured” by method:
* can be allocated on the stack or in registers.
— “Captured” by thread:
* can avoid synchronization operations.
e AllJava objects are normally heap allocated, so this is a big win.
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Escape Analysis: Optimizations

e Stack allocate objects that don’t escape in the common blocks.
* Eliminate synchronization on objects that don’t escape the common blocks.
e Ifabranchto arare block is taken:

— Copy stack-allocated objects to the heap and update pointers.

— Reapply eliminated synchronizations.
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VII. Run Time Improvement
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First bar: original (Whole method opt)
Second bar: Partial Method Comp (PMC)
Third bar: PMC + opts
I Bottom bar: Execution time if code was compiled/opt. from the beginning
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