Lecture 25
Dynamic Code Optimization

. Motivation & Background

1. Compilation Policy

lll. Partial Method Compilation
IV. Partial Dead Code Elimination
V. Escape Analysis

VI. Results

“Partial Method Compilation Using Dynamic Profile Information”,
John Whaley, OOPSLA 01

(Slide content courtesy of John Whaley & Monica Lam.)

T Carnegic Metlon [N

Todd C. Mowry 15-745: Dynamic Compilation 1

Scenario #1: Better Information for Offline Optimization

e Understanding common dynamic behaviors may help guide optimizations
— e.g., control flow, data dependences, input values

void foo(int A, int B) {
S~ S~ Whatare typical values of A, B?

while (..) {
if (A > B)<€
*p = 0,;,€ How often does *p==val[i]?
C =val[i] + D;e—_]
E += C - B;

How often is this condition true?

~ Is this loop invariant?

* Useful for speculative scheduling, cache optimizations, code specialization, etc.

I Carnegic Metion [N

15-745: Dynamic Compilation 2 Todd C. Mowry

Profile-Based Optimization

1. Compile statically 2. Collect profile 3. Re-compile, using profile
(using typical inputs)
progl C inputl [progl.c
[execution

/ (/nstrumented)

runme exe executlon
profile

runme.exe }/

[runme_v2.exe }

* Collecting control-flow profiles is relatively inexpensive
— profiling data dependences, data values, etc., is more costly
* Limitations of this approach?

Carnegie Mellon -

15-745: Dynamic Compilation 3 Todd C. Mowry

Instrumenting Executable Binaries

1. Compile statically 2. Collect profile
(using typical inputs)

[progl.c [inputl
How to perform the

. / instrumentation?
*

runme.exe
(instrumented)

.....#--_.‘
execution
profile

1. The compiler could insert it directly

binary
instrumentation
tool

2. A binary instrumentation tool could modify the executable directly
— that way, we don’t need to modify the compiler
— compilers that target the same architecture (e.g., x86) can use the same tool

Carnegie Mellon -

15-745: Dynamic Compilation 4 Todd C. Mowry

Binary Instrumentation/Optimization Tools

e Unlike typical compilation, the input is a binary (not source code)
* One option: static binary-to-binary rewriting

[runme.exe runme_modified.exe }

* Challenges (with the static approach):

— what about dynamically-linked shared libraries?
— if our goal is optimization, are we likely to make the code faster?
* acompiler already tried its best, and it had source code (we don’t)
— if we are adding instrumentation code, what about time/space overheads?
* instrumented code might be slow and bloated if we aren’t careful
e optimization may be needed just to keep these overheads under control

* Bottom line: the purely static approach to binary rewriting is rarely used

I Carnegic Metion [N

15-745: Dynamic Compilation 5 Todd C. Mowry

Another Extreme: The Interpreter Approach

* One approach to dynamic code execution/analysis is an interpreter

— basic idea: a software loop that grabs, decodes, and emulates each instruction

while (stillExecuting) ({
inst = readInst (PC) ;
instInfo = decodeInst(inst);
switch (instInfo.opType) {
case binaryArithmetic: ..
case memorylLoad: ..

}
PC = nextPC(PC,instInfo) ;

}

e Advantages:

— also works for dynamic programming languages (e.g., Java)
— easy to change the way we execute code on-the-fly (SW controls everything)
* Disadvantages:

— runtime overhead!
* each dynamic instruction is emulated individually by software

I Carnegic Metion [N

15-745: Dynamic Compilation 6 Todd C. Mowry

-
A Sweet Spot?

* |sthere a way that we can combine:
— the flexibility of an interpreter (analyzing and changing code dynamically); and
— the performance of direct hardware execution?

e Key insights:

— increase the granularity of interpretation
* instruetons =2 chunks of code (e.g., procedures, basic blocks)

— dynamically compile these chunks into directly-executed optimized code
» store these compiled chunks in a software code cache
e jump in and out of these cached chunks when appropriate
* these cached code chunks can be updated!

— invest more time optimizing code chunks that are clearly hot/important
e easy to instrument the code, since already rewriting it
* must balance (dynamic) compilation time with likely benefits

I Carnegic Metlon [N

15-745: Dynamic Compilation 7 Todd C. Mowry

Main Loop of Chunk-Based Dynamic Optimizer

while (stillExecuting) {
if (!'codeCompiledAlready(PC)) {
compileChunkAndInsertInCache (PC) ;

}
jumpIntoCodeCache (PC) ;

// compiled chunk returns here when finished
PC = getNextPC(..) ;

* This general approach is widely used:

— Java virtual machines
— dynamic binary instrumentation tools (Valgrind, Pin, Dynamo Rio)

— hardware virtualization

T carnegie Meton. [N
8 Todd C. Mowry

15-745: Dynamic Compilation

Components in a Typical Just-In-Time (JIT) Compiler

E ------------- Dynamic COde -------
asrertn Optimizer """*\

3 i \
Input : “Interpreter” Compiled Code
Program Control Loop Cache (Chunks)

Cache Manager
(Eviction Policy)

e Cached chunks of compiled code run at hardware speed
— returns control to “interpreter” loop when chunk is finished
* Dynamic optimizer uses profiling information to guide code optimization
— as code becomes hotter, more aggressive optimization is justified
- replace the old compiled code chunk with a faster version

I Carnegic Metlon [N

15-745: Dynamic Compilation 9 Todd C. Mowry

II. Overview of Dynamic Compilation

* Interpretation/Compilation policy decisions
— Choosing what and how to compile

e Collecting runtime information

— Instrumentation
— Sampling

e Exploiting runtime information
— frequently-executed code paths

I Carnegic Metlon [N

15-745: Dynamic Compilation 13 Todd C. Mowry

Speculative Inlining

V-Table

Method 1 [
Method 2
Method 3
Method 4
Method 5 |

(l

e Virtual call sites are deadly
— kill optimization opportunities
— virtual dispatch (via indirect jumps) is expensive on modern CPUs
— very common in object-oriented code

* Speculatively inline the most likely call target (based on profile, class hierarchy)
— works well since many virtual call sites have only one actual target

I Carnegic Metion [N

15-745: Dynamic Compilation 14 Todd C. Mowry

l1l. Compilation Policy

— £ S
ATtotal =T (nexecutions T

compile improvement)

— If AT, is negative, our compilation policy decision was effective.

* Wecantryto:
— Reduce T, (faster compile times)
— Increase T, ovement (8€NErate better code)
— Focus on large N ... tions (COMpile hot spots)

e 80/20 rule: Pareto Principle
— 20% of the work for 80% of the advantage

I Carnegic Metion [N

15-745: Dynamic Compilation 15 Todd C. Mowry

-]
Latency vs. Throughput

e Tradeoff: startup speed vs. execution performance

Startup speed Execution performance
Interpreter Best Poor
‘Quick’ compiler Fair Fair
Optimizing compiler Poor Best

I Carnegic Metion [N

15-745: Dynamic Compilation 16 Todd C. Mowry

-]
Multi-Stage Dynamic Compilation System

Stage 1:

Stage 2:

Stage 3:

interpreted
code

when execution
count =t1 (e.g. 2000)

compiled
code

Execution count is the sum of
method invocations & back edges
executed.

when execution
count =t2 (e.g. 25000)

fully optimized
code

I Carnegic Metlon [N

15-745: Dynamic Compilation

Todd C. Mowry

Granularity of Compilation

. Compilation time is proportional to the amount of code being compiled.

. Many optimizations are not linear.

. Methods can be large, especially after inlining.

. Cutting inlining too much hurts performance considerably.

. Even “hot” methods typically contain some code that is rarely/never executed.

I Carnegic Metlon [N

15-745: Dynamic Compilation 18 Todd C. Mowry

Example: SpecJVM db

void read db(String £fn) {
int n = 0, act = 0; byte buffer[] = null;

try {
FileInputStream sif = new FileInputStream(£fn) ;

buffer = new byte[n];
Hot while ((b = sif.read(buffer, act, n-act))>0) {
— act = act + b;
loop }
sif.close() ;
if (act !'= n) {
/* lots of error handling code, rare */

}
} catch (IOException ioe) {

/* lots of error handling code, rare */

}
}

T carnegie Meton [
Todd C. Mowry

15-745: Dynamic Compilation 19

Example: SpecJVM db

void read db(String £fn) {
int n = 0, act = 0; byte buffer[] = null;

try {
FileInputStream sif = new FileInputStream(£fn) ;

buffer = new byte[n];
while ((b = sif.read(buffer, act, n-act))>0) {

act = act + b;
}
sif.close () ; Lots of
if (act !'=n) { rare code!
/* lots of error handling code, rare */4_1

}
} catch (IOException ioe) {

/* lots of error handling code, rare */
} —

}

T carnegie Meton. [N
Todd C. Mowry

15-745: Dynamic Compilation 20

Optimize hot “regions”, not methods

e Optimize only the most frequently executed segments within a method.
— Simple technique:
e any basic block executed during Stage 2 is considered to be hot.

* Beneficial secondary effect of improving optimization opportunities on the
common paths.

I Carnegic Metlon [N

15-745: Dynamic Compilation 21 Todd C. Mowry

Method-at-a-Time Strategy

‘
!\

—e— L npack
—m— JavaCUP

\

—a— JavalLEX
—— Sw hgSet

\\\

—x— check
—®— com press

PSS

A

——db
—=—— pvac

100.00%
1 80.00%
%-
=
S 60.00%
R,

o

= 40.00%

O

g

“ 20.00%
0.00%

—e— m pegaud
—a—m trt

15-745: Dynamic Compilation

10 100 500 1000 2000 5000

execution threshold

22

—A— pok

Carnegie Mellon -

Todd C. Mowry

% of basic blocks executed

Actual Basic Blocks Executed

100.00%

80.00%

60.00%

40.00%

—e— | npack

—s— JavaCUP

—a— JavalLEX

—— Sw hgSet

—x— check

—®— CcOom press
+— PSS

20.00%

0.00%

15-745: Dynamic Compilation

10 100 500 1000 2000 5000

execution threshold

23

——db

—=— pvac
—e— m pegaud
—a—n trt
—A— pck

Carnegie Mellon -

Todd C. Mowry

Dynamic Code Transformations

e Compiling partial methods
e Partial dead code elimination
* Escape analysis

I Carnegic Metion [N

15-745: Dynamic Compilation 24 Todd C. Mowry

-]
V. Partial Method Compilation

1. Based on profile data, determine the set of rare blocks.
— Use code coverage information from the first compiled version

I Carnegic Metlon [N

15-745: Dynamic Compilation 25 Todd C. Mowry

-]
Partial Method Compilation

2. Perform live variable analysis.
— Determine the set of live variables at rare block entry points.

live: x,y,z

I Carnegic Metion [N

15-745: Dynamic Compilation 26 Todd C. Mowry

Partial Method Compilation

3. Redirect the control flow edges that targeted rare blocks, and remove the rare
blocks.

to interpreter...

Carnegie Mellon -

15-745: Dynamic Compilation 27 Todd C. Mowry

-]
Partial Method Compilation

4. Perform compilation normally.

— Analyses treat the interpreter transfer point as an unanalyzable method
call.

I Carnegic Metlon [N

15-745: Dynamic Compilation 28 Todd C. Mowry

-]
Partial Method Compilation

5. Record a map for each interpreter transfer point.

— In code generation, generate a map that specifies the location, in registers
or memory, of each of the live variables.

— Maps are typically < 100 bytes

live: x,y,z

X:sp-4
I y:rl

|z:sp—8 |

I Carnegic Metion [N

15-745: Dynamic Compilation 29 Todd C. Mowry

-]
V. Partial Dead Code Elimination

 Move computation that is only live on a rare path into the rare block, saving
computation in the common case.

I Carnegic Metlon [N

15-745: Dynamic Compilation 30 Todd C. Mowry

Partial Dead Code Example

x =0; if (rare branch 1) {
if (rare branch 1) { x =0;
zZ =x +vy; zZ = x +vy;
} }
if (rare branch 2) { # if (rare branch 2) {
x = 0;

a=x+<+ z;

I Carnegic Metlon [N

15-745: Dynamic Compilation 31 Todd C. Mowry

-]
V. Escape Analysis

e Escape analysis finds objects that do not escape a method or a thread.
— “Captured” by method:
* can be allocated on the stack or in registers.
— “Captured” by thread:
* can avoid synchronization operations.
e AllJava objects are normally heap allocated, so this is a big win.

I Carnegic Metlon [N

15-745: Dynamic Compilation 32 Todd C. Mowry

Escape Analysis: Optimizations

e Stack allocate objects that don’t escape in the common blocks.
* Eliminate synchronization on objects that don’t escape the common blocks.
e Ifabranchto arare block is taken:

— Copy stack-allocated objects to the heap and update pointers.

— Reapply eliminated synchronizations.

I Carnegic Metlon [N

15-745: Dynamic Compilation 33 Todd C. Mowry

VII. Run Time Improvement

100.00% -
90.00% A
80.00% A
70.00% A
60.00%
50.00% -
40.00% -
30.00% -
20.00% A
10.00%

0.00% -

check compress jess db javac mpegaud mtrt jack SwingSet linpack JLex JCup

First bar: original (Whole method opt)
Second bar: Partial Method Comp (PMC)
Third bar: PMC + opts
I Bottom bar: Execution time if code was compiled/opt. from the beginning

I Carnegic Metion [N

15-745: Dynamic Compilation 34 Todd C. Mowry

