Lecture 19

Software Pipelining

l. Introduction
II. Problem Formulation

Ill. Algorithm

T Carnegic Metlon [N

Todd C. Mowry 15-745: Software Pipelining 1

-
|. Example of DoAll Loops

e Machine:

— Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware loop op
and auto-incrementing addressing mode.

* Source code:
For i =1 to n
D[i] = A[i] * B[i]+ c
e Code for one iteration:

1. LD R5,0(R1l++)
LD R6,0 (R2++)
. MUL R7,R5,R6

. ADD R8,R7,R4

S o mdbdWwWDN

ST 0(R3++) ,R8

e Little or no parallelism within basic block

I Carnegic Metlon [N

15-745: Software Pipelining 2 Todd C. Mowry

Loop Unrolling

1.L.: LD
2. LD Schedule after unrolling by a factor of 4
3. LD «—
4. MUL LD
5. MUL LD
6. ADD LD
7. ADD LD
8. ST MUL LD
9. MUL
10. ST ADD
11. ADD
12. ST
13. ST BL (L)

* Let ubethe degree of unrolling:
— Length of u iterations = 7+2(u-1)
— Execution time per source iteration = (7+2(u-1)) /u= 2 +5/u

I Carnegic Metlon [N

15-745: Software Pipelining 3 Todd C. Mowry

Software Pipelined Code

1. 1D

2. 1D

3. MUL LD

4. LD

5. MUL LD

6. ADD LD

7. MUL LD

8. ST ADD LD

9. MUL LD
10. ST ADD LD
11. MUL
12. ST ADD
13.
14. ST ADD
15.
16. ST

e Unlike unrolling, software pipelining can give optimal result.
* Locally compacted code may not be globally optimal
 DOALL: Can fill arbitrarily long pipelines with infinitely many iterations

I Carnegic Metlon [N

15-745: Software Pipelining 4 Todd C. Mowry

Example of DoAcross Loop

Loop:
_ 1.LD
Sur.n = Sum.+ A[i]; — 2 MUL
B[i] = A[i] * c; 3.ADD
4. ST
Software Pipelined Code
1. ILD
2. MUL
3. ADD LD
4. ST MUL
5. ADD
6. ST

Doacross loops
* Recurrences can be parallelized
e Harder to fully utilize hardware with large degrees of parallelism

I Carnegic Metion [N

15-745: Software Pipelining 5 Todd C. Mowry

Il. Problem Formulation

Goals:
— maximize throughput
— small code size
Find:
— anidentical relative schedule S(n) for
every iteration
— aconstant initiation interval (T)
such that
— the initiation interval is minimized
Complexity:

— NP-complete in general

0 LD
1 MUL
2 ADD
3 ST

I Carnegic Metlon [N

15-745: Software Pipelining 6

Todd C. Mowry

Impact of Resources on Bound on Initiation Interval

 Example: Resource usage of 1 iteration
— (assume machine can execute 1 LD, 1 ST, 2 ALU per clock)

LD, LD, MUL, ADD, ST
* Lower bound on initiation interval?
for all resource i,

number of units required by one iteration: n,
number of units in system: R,

Lower bound due to resource constraints: max, n./R

I Carnegic Metlon [N

15-745: Software Pipelining 7 Todd C. Mowry

Scheduling Constraints: Resources

Iteration 1
LD Alu ST
Iteration 2 —
LD Alu ST $ T=2
Iteration 3
LD Alu ST
Q Iteration 4 Steady State
£ LD Alu ST LD Alu ST
[» .
- ° T=2
»
»
v »

e RT: resource reservation table for single iteration
* RT,: modulo resource reservation table
RTS[I] = 2t|(t mod T =) RT[t]

Carnegie Mellon -

15-745: Software Pipelining 8 Todd C. Mowry

Scheduling Constraints: Precedence

for (i = 0; i < n; i++) {
*(pt+) = *(g++) + ¢

}

LD LD

1 <0,1>
ADD ADD <l,1>

2 <0.2>

ST ST
1 LD

1
ADD

&2
ST
* Minimum initiation interval?
* S(n): schedule for n with respect to the beginning of the schedule

* Label edges with< 9, d >
» J =iteration difference, d = delay

OxT+S(n,)-S(n,)=d

I Carnegic Metlon [N

15-745: Software Pipelining 9 Todd C. Mowry

Scheduling Constraints: Precedence

for (i = 2; i < n; i++) {
A[i] = A[i-2] + 1;

} LD
1
ADD LD
2 |1 <0,1>
ST ADD <2,1>
1 <02>
2

* Minimum initiation interval?
* S(n): schedule for n with respect to the beginning of the schedule

* Label edges with< 9, d >
» J =iteration difference, d = delay

OxT+S(n,)-S(n,)=d

Carnegie Mellon -

15-745: Software Pipelining 10 Todd C. Mowry

Minimum Initiation Interval

For all cycles c,

max . CycleLength(c) / IterationDifference (c)

C

I Carnegic Metion [N

15-745: Software Pipelining 11 Todd C. Mowry

I1l. Example: An Acyclic Graph

ON=s"5

<0 a
N ° <03> b
C

<0,1>

Carnegie Mellon -

15-745: Software Pipelining 12 Todd C. Mowry

-
Algorithm for Acyclic Graphs

* Find lower bound of initiation interval: T,
— based on resource constraints

* ForT=T, T,+1, ... until all nodes are scheduled

— For each node n in topological order
* s, =earliest n can be scheduled
e foreachs=s,,s,+1,...,5,+T-1
* if NodeScheduled(n, s) break;
* if n cannot be scheduled break;

* NodeScheduled(n, s)
— Check resources of n at s in modulo resource reservation table

e Can always meet the lower bound if:

— every operation uses only 1 resource, and
— no cyclic dependences in the loop

I Carnegic Metlon [N

15-745: Software Pipelining 13 Todd C. Mowry

Cyclic Graphs

* No such thing as “topological order”

e b=2>cc2b
S(c)—-S(b) =1
T+ S(b)—S(c)=2

e Scheduling b constrains c, and vice versa

S(b)+1=<S(c)=S(b)—2+T
S(c)-T+2=<S(b)=<S(c)-1

I Carnegic Metlon [N

15-745: Software Pipelining 14 Todd C. Mowry

Strongly Connected Components

* A strongly connected component (SCC)

— Set of nodes such that every node can reach every other node
e Every node constrains all others from above and below

— Finds longest paths between every pair of nodes

— As each node scheduled,
find lower and upper bounds of all other nodes in SCC

e SCCs are hard to schedule

— Critical cycle: no slack
* Backtrack starting with the first node in SCC

— increases T, increases slack
 Edges between SCCs are acyclic
— Acyclic graph: every node is a separate SCC

I Carnegic Metlon [N

15-745: Software Pipelining 15 Todd C. Mowry

-]
Algorithm Design

* Find lower bound of initiation interval: T,
— based on resource constraints and precedence constraints

* ForT=T,T,+1, ..., until all nodes are scheduled

— E*=longest path between each pair

— For each SCC c in topological order
* s, = Earliest c can be scheduled
* Foreachs=s,,s,+1, ..., 5,+T-1
e if SCCScheduled(c, s) break;
* If c cannot be scheduled return false;

— return true;

I Carnegic Metion [N

15-745: Software Pipelining 16 Todd C. Mowry

-
Scheduling a Strongly Connected Component (SCC)

e SCCScheduled(c, s)
— Schedule first node at s, return false if fails
— For each remaining node ninc
* s,=lower bound on n based on E*
* s,.upper bound on n based on E*
* Foreachs=s,,s +1, min (s +T-1,s)
e if NodeScheduled(n, s) break;
* If n cannot be scheduled return false;

— return true;

Y Carnegic Metlon [N

15-745: Software Pipelining 17 Todd C. Mowry

Modulo Variable Expansion

* Software-pipelined code 1. LD RS5,0 (R1++)
2. LD R6,0 (R2++)
1. 1D 3. MUL R7,R5,R6
2. 1D 4.
3. MUL LD 5.
4. LD 6. ADD R8,R7,R4
5. MUL LD 7.
6. ADD 1.D 8. ST 0(R3++) ,R8
L:7. MUL LD
8. ST ADD LD BL L
9. MUL LD
10. ST ADD LD
11. MUL
12. ST ADD
13.
14. ST ADD

I Carnegic Metlon [N

15-745: Software Pipelining 18 Todd C. Mowry

Modulo Variable Expansion

LD R5,0 (R1++)
LD R6,0 (R2++)
LD R5,0(R1l++) MUL R7,R5,R6
LD R6,0 (R2++)
LD R5,0(R1++) MUL R9,R5,R6
LD R6,0 (R2++) ADD R8,R7,R4

e
HRRER OO goo I dWIHNR
Ho..‘......

LD R5,0(R1++) MUL R7,R5,R6
LD R6,0(R2++) ADD R8,R9,R4 ST 0 (R3++) ,R8
LD R5,0(R1++) MUL R9,R5,R6
LD R6,0(R2++) ADD R8,R7,R4 ST 0(R3++),R8 BL L
MUL R7,R5,R6
12. ADD R8,R9,R4 ST 0 (R3++),R8
13.
14. ADD R8,R7,R4 ST 0 (R3++),R8
15.
16. ST 0 (R3++) ,R8

I Carnegic Metlon [N

15-745: Software Pipelining 19 Todd C. Mowry

-]
Algorithm

* Normally, every iteration uses the same set of registers

— introduces artificial anti-dependences for software pipelining
* Modulo variable expansion algorithm

— schedule each iteration ignoring artificial constraints on registers

— calculate life times of registers

— degree of unrolling = max, (lifetime, /T)

— unroll the steady state of software pipelined loop to use different registers
 Code generation

— generate one pipelined loop with only one exit
(at beginning of steady state)

— generate one unpipelined loop to handle the rest
— code generation is the messiest part of the algorithm!

Y Carnegic Metlon [N

15-745: Software Pipelining 20 Todd C. Mowry

Conclusions

e Numerical Code

— Software pipelining is useful for machines with a lot of pipelining and
instruction level parallelism

— Compact code
— Limits to parallelism: dependences, critical resource

I Carnegic Metion [N

15-745: Software Pipelining 21 Todd C. Mowry

