Lecture 18
List Scheduling & Global Scheduling

Reading: Chapter 10.3-10.4

T Carnegic Metlon [N

Todd C. Mowry 15745: List & Global Scheduling 1

Review: The Ideal Scheduling Outcome

 What prevents us from achieving this ideal?
Before After

Fime _E-EEEE mEms = mRpREE

N cycles

y

\

I Carnegic Metion [N

15745: List & Global Scheduling 2 Todd C. Mowry

Review: Scheduling Constraints

* Hardware Resources
— finite set of FUs with instruction type, bandwidth, and latency constraints
— cache hierarchy also has many constraints
 Data Dependences
— can’t consume a result before it is produced
— ambiguous dependences create many challenges
* Control Dependences
— impractical to schedule for all possible paths

— choosing an “expected” path may be difficult
* recovery costs can be non-trivial if you are wrong

I Carnegic Metion [N

15745: List & Global Scheduling 3 Todd C. Mowry

-
Scheduling Roadmap

N N, 1

x=a+b ;_‘x=a+b§ ‘x=a+b
v - .+ d / \ s v o a
AN L-cva] =T
K T X
List Scheduling: Global Scheduling: Software Pipelining:
e within a basic block e gcross basic blocks e across loop iterations

I Carnegic Metion [N

15745: List & Global Scheduling 4 Todd C. Mowry

-
List Scheduling

* The most common technique for scheduling instructions within a basic block

We don’t need to worry about:

— control flow \/

a + b

X
We do need to worry about:

— data dependences A% c +d

— hardware resources /\

e Even without control flow, the problem is still NP-hard

I Carnegic Metlon [N

15745: List & Global Scheduling 5 Todd C. Mowry

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:

— “An Experimental Evaluation of List Scheduling”, Keith D. Cooper, Philip J. Schielke, and
Devika Subramanian. Rice University, Department of Computer Science Technical Report
98-326, September 1998.

Inputs: Output:
Data Precedence Machine
Graph (DPG) Parameters . Scheduled Code Cycle
® @ @ |[#oms o e [
2INT, 1FP I I | 14 1
@ @ Latencies:
add = 1 cycle, 13 18 16 2
(3) (&) (15) | FPeclnce o | - 1|3
1 add le, ... :
() add/cycle 7 (9 |5 | a4
Carnegie Mellon -

15745: List & Global Scheduling 6 Todd C. Mowry

-
List Scheduling: The Basic Idea

* Maintain a list of instructions that are ready to execute
— data dependence constraints would be preserved
— machine resources are available

* Moving cycle-by-cycle through the schedule template:
— choose instructions from the list & schedule them
— update the list for the next cycle

=
1

I Carnegic Metlon [N

15745: List & Global Scheduling 7 Todd C. Mowry

What Makes Life Interesting: Choice

Easy case:

— all ready instructions can be scheduled this cycle

Gll |7> «

Interesting case:

— we need to pick a subset of the ready instructions

@ 1110 |2D 2?2 ‘
~"

e List scheduling makes choices based upon priorities

— assigning priorities correctly is a key challenge

Carnegie Mellon -

15745: List & Global Scheduling 8 Todd C. Mowry

Intuition Behind Priorities

* Intuitively, what should the priority correspond to?
 What factors are used to compute it?
— data dependences?

— machine parameters?

() (2 (D 4 of FUS
2 INT,1FP
@ @ Latencies:
add =1 cycle, ...

e @ G Pipelining:
1 add/cycle, ...
(1)

Carnegie Mellon -

15745: List & Global Scheduling 9 Todd C. Mowry

Representing Data Dependences:
The Data Precedence Graph (DPG)

* Two different kinds of edges:

Code
10 - true “edges”: E
I1 (read-after-write)
I2:

x\=. 2 “anti-edges”: E’

I3: z ="x; (write-after-read) Li

* Why distinguish them?
— do they affect scheduling differently?

 What about output dependences?

Carnegie Mellon -

15745: List & Global Scheduling 10 Todd C. Mowry

Computing Priorities

e Let’s start with just true dependences (i.e. “edges” in DPG)
e Priority = latency-weighted depth in the DPG

[
priority(z) = max(vleleaves(DPG)VpEpaths(a:,...,l) Z latency(p;))

pi=x
Carnegie Mellon -

15745: List & Global Scheduling 11 Todd C. Mowry

Computing Priorities (Cont.)

* Now let’s also take anti-dependences into account
— i.e. anti-edges in the set E’

latency(x) if z is a leaf
priority(x) = { max(latency(z) + max(x,y)eE(priority(y)),
MaT (g)/ (priority(y))) otherwise.

:;IE; e’ l e’
Carnegie Mellon -

15745: List & Global Scheduling 12 Todd C. Mowry

-]
List Scheduling Algorithm

cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

while ((|ready-list|+|inflight-list| > 0) && an issue slot is available) {
for op = (all nodes in ready-list in descending priority order) {
if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
if (op has an outgoing anti-edge)
add all targets of op’s anti-edges that are ready to ready-list;

}
cycle = cycle + 1;
for op = (all nodes in inflight-list)
if (op finishes at time cycle) {
remove op from inflight-list;

check nodes waiting for op & add to ready-list if all operands
available;

}

I Carnegic Metion [N

15745: List & Global Scheduling 13 Todd C. Mowry

Example

I0: a =1

LIt @
i adoe
1 eosec
ror 2o o1 (10

I10: JMP L1

e 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

15745: List & Global Scheduling 14

Carnegie Mellon -

Todd C. Mowry

Example

I0: a =1

LIt @
i adoe
1 eosec
ror 2o o1 (10

I10: JMP L1

e 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

15745: List & Global Scheduling 15

Cycle
10 12 0
11 13 1
|5 19 2
14 |7 3
18 16 4
5
110 6
Carnegie Mellon -

Todd C. Mowry

What if We Break Ties Differently?

I0: a =1 Lycle
I1: £ =a + x 0
I2: b =7 1
I3: ¢c =9
I4: g=f + Db 2
I5: 4 = 13 3
I6: e = 19;
I7: h=f + ¢ 4
I8: J =d + vy 5
I9: z = -1 6
I10: JMP L1
e 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: List & Global Scheduling 16 Todd C. Mowry

What if We Break Ties Differently?

I0: a =1
I1: £ =a + x
I2: b =7
I3: ¢ =9
I4: g=f + Db
I5: 4 = 13
I6: e = 19;
I7: h=f + ¢
I8: J =d + vy
I9: z = -1

I10: JMP L1

e 2 identical fully-pipelined FUs

SR

(19

* adds take 2 cycles; all other insts take 1 cycle

15745: List & Global Scheduling

17

Cycle

110

o U A W N = O

Carnegie Mellon -

Todd C. Mowry

Contrasting the Two Schedules

* Breaking ties arbitrarily may not be the best approach

Cycle Cycle
10 12 0 10 12 0
11 13 1 11 15 1
‘,-!
15 19 2 B | @®)] 2
14 17 3 14 17 3
8 | 16 4 6 4
5 110 5
110 6
Carnegie Mellon -

15745: List & Global Scheduling 18 Todd C. Mowry

-]
Backward List Scheduling

Modify the algorithm as follows:

— reverse the direction of all edges in the DPG

— schedule the finish times of each operation
 start times must still be used to ensure FU availability

Forward Scheduling Priorities Backward Scheduling Priorities

Carnegie Mellon -

15745: List & Global Scheduling 19 Todd C. Mowry

-]
Backward List Scheduling

Modify the algorithm as follows:

— reverse the direction of all edges in the DPG

— schedule the finish times of each operation
 start times must still be used to ensure FU availability

Impact of scheduling backwards:

— clusters operations near the end (vs. the beginning)
— may be either better or worse than forward scheduling

I Carnegic Metlon [N

15745: List & Global Scheduling 20 Todd C. Mowry

Backward List Scheduling Example:
Let’s Schedule it Forward First

INT INT MEM Cycle

LDla LSL ---- 0
LDIb LDIc ---- 1
LDId ADDa ---- 2
ADDb ADDc ---- 3
ADDd ADDI STa 4
CMP - STb 5
STc 6
STd 7
STe 8
——- ——- ——- 9
10
11
BR 12
Hardware parameters:
— 2 INT units: ADDs take 2 cycles; others take 1 cycle
— 1 MEM unit: stores (ST) take 4 cycles
Carnegie Mellon -

15745: List & Global Scheduling 21 Todd C. Mowry

Now Let’s Try Scheduling Backward

INT INT MEM Cycle
LDla ---- ---- 0
ADDI LSL ---- 1
ADDd LDIc ---- 2
ADDc LDId STe 3
ADDb LDla STd 4
ADDa | - STc 5
STb 6
STa 7
—- ——- ——- 8
——- ——- ——- 9
cvp_ | 10
BR 11
Hardware parameters:
— 2 INT units: ADDs take 2 cycles; others take 1 cycle
— 1 MEM unit: stores (ST) take 4 cycles
Carnegie Mellon -

15745: List & Global Scheduling 22 Todd C. Mowry

Contrasting Forward vs. Backward
List Scheduling

Forward Backward

INT INT MEM Cycle INT INT MEM Cycle
LDla LSL - 0 LDla - - 0
LDIb LDlIc - 1 ADDI LSL - 1
LDId ADDa - 2 ADDd LDlc - 2
ADDb ADDc -—- 3 ADDc LDId STe 3
ADDd ADDI STa 4 ADDb LDla STd 4
CMP | — STh 5 ADDa | — STC 5
STc 6 STh 6
STd 7 STa 7
---- -—-- STe 8 -—-- -—-- -—-- 8
10 cMp | - 10
11 BR 11
BR 12

* backward scheduling clusters work near the end
* backward is better in this case, but this is not always true

I Carnegic Metion [N

15745: List & Global Scheduling 23 Todd C. Mowry

Evaluation of List Scheduling

Cooper et al. propose “RBF” scheduling:

— schedule each block M times forward & backward
— break any priority ties randomly

For real programs:

— regular list scheduling works very well

For synthetic blocks:

— RBF wins when “available parallelism” (AP) is ~2.5
— for smaller AP, scheduling is too constrained
— for larger AP, any decision tends to work well

I Carnegic Metlon [N

15745: List & Global Scheduling 24 Todd C. Mowry

-
List Scheduling Wrap-Up

e The priority function can be arbitrarily sophisticated
— e.g., filling branch delay slots in early RISC processors

e List scheduling is widely used, and it works fairly well

* Itis limited, however, by basic block boundaries

I Carnegic Metlon [N

15745: List & Global Scheduling 25 Todd C. Mowry

Scheduling Roadmap

\/ e \/ r\l

x=a+b -:_‘x=a+b.§ x=a+b
v - .+ d / \ s v o a
7\ [=cra| =
T T s
List Scheduling: Global Scheduling: Software Pipelining:
e within a basic block ® gcross basic blocks e across loop iterations

I Carnegic Metlon [N

15745: List & Global Scheduling 26 Todd C. Mowry

Introduction to Global Scheduling

Assume each clock can execute 2 operations of any kind.

B
if (a==0) goto L LD R6 <- O(R1) '
nop
BEQZ R6, L
c = b Q 6,
L: =
e=d+d LD R7 <- 0(R2) |22

nop
ST 0(R3) <- R7

—

L:|LD R8 <- O(R4) >
nop

ADD R8 <- R8,RS
ST O0(R5) <- RS

I Carnegic Metion [N

15745: List & Global Scheduling 27 Todd C. Mowry

Result of

Code Scheduling

LD R6 <- O(R1)
LD R7 <- 0 (R2)

ADD R8 <- R8,R8 ; BEQZ R6, L

; LD R8 <- 0(R4)

3

L:|sT O(R5) <- RS8

//B/\ BB’

ST O(R5) <- R8 ; ST O0(R3) <- R7

I Carnegic Metlon [N

15745: List & Global Scheduling

28 Todd C. Mowry

Terminology

Control equivalence:

* Two operations o, and o, are control equivalent if o,
is executed if and only if o, is executed.

Control dependence:

* Anop o, iscontrol dependent on op 0,
\A/ if the execution of o, depends on the outcome of o,.

/ \ Speculation:

 An operation o is speculatively executed if it is

\/ executed before all the operations it depends on

(control-wise) have been executed.

e Requirements:

— does not raise an exception
— satisfies data dependences

I Carnegic Metlon [N

15745: List & Global Scheduling 29 Todd C. Mowry

-]
Code Motions

/\ Goal: Shorten execution time probabilistically
/\ Moving instructions up:

 Move instruction to a cut set (from entry)

\/ * Speculation: even when not anticipated.

Src

Moving instructions down:

Src

/\ Move instruction to a cut set (from exit)

May execute extra instruction

\/ * Can duplicate code

I Carnegic Metion [N

15745: List & Global Scheduling 30 Todd C. Mowry

A Note on Data Dependences

T carnegie Meton. [
15745: List & Global Scheduling

31 Todd C. Mowry

General-Purpose Applications

* Lots of data dependences
* Key performance factor: memory latencies

e Move memory fetches up

— Speculative memory fetches can be expensive

e Control-intensive: get execution profile

— Static estimation
* Innermost loops are frequently executed
— back edges are likely to be taken
* Edges that branch to exit and exception routines are not likely to be taken
— Dynamic profiling
* Instrument code and measure using representative data

I Carnegic Metion [N

15745: List & Global Scheduling 32 Todd C. Mowry

-
A Basic Global Scheduling Algorithm

e Schedule innermost loops first
* Only upward code motion
* No creation of copies

* Only one level of speculation

I Carnegic Metlon [

15745: List & Global Scheduling 33 Todd C. Mowry

Program Representation

* Aregionin a control flow graph is:
— a set of basic blocks and all the edges connecting these blocks,

— such that control from outside the region must enter through a single entry
block.

A procedure is represented as a hierarchy of regions
— The whole control flow graph is a region
— Each natural loop in the flow graph is a region
— Natural loops are hierarchically nested

* Schedule regions from inner to outer

— treat inner loop as a black box unit
* can schedule around it but not into it

— ignore all the loop back edges = get an acyclic graph

I Carnegic Metlon [N

15745: List & Global Scheduling 34 Todd C. Mowry

-]
Algorithm

Compute data dependences;
For each region from inner to outer {
For each basic block B in prioritized topological order {
CandBlocks = ControlEquiv{B} U
Dominated-Successors{ControlEquiv{B}};
Candlnsts = ready operations in CandBlocks;
For (t =0, 1, ... until all operations from B are scheduled) {
For (n in CandlInst in priority order) {
if (n has no resource conflicts at time t) {
S(n)=<B,t>
Update resource commitments
Update data dependences

}
Update CandIinsts;

1

Priority functions: non-speculative before speculative

I Carnegic Metion [N

15745: List & Global Scheduling 35 Todd C. Mowry

Extensions

* Prepass before scheduling: loop unrolling

e Especially important to move operation up loop back edges

Y

<— 0004—

I
v
I Carnegic Metlon [N

15745: List & Global Scheduling 36 Todd C. Mowry

Summary

* Global scheduling
— Legal code motions

— Heuristics

I Carnegic Metlon [N

15745: List & Global Scheduling 37 Todd C. Mowry

