Lecture 17

Intro to Instruction Scheduling

Reading: Chapter 10.1 —10.2

Todd C. Mowry 15745 Intro to Scheduling 1

|
Optimization: What’s the Point? (A Quick Review)

Machine-Independent Optimizations:
— e.g., constant propagation & folding, redundancy elimination, dead-code
elimination, etc.
— Goal: eliminate work

Machine-Dependent Optimizations:
— register allocation
* Goal: reduce cost of accessing data
— instruction scheduling
* Goal: 7??

15745: Intro to Scheduling 2 Todd C. Mowry

|
The Goal of Instruction Scheduling

* Assume that the remaining instructions are all essential
— (otherwise, earlier passes would have eliminated them)
¢ How can we perform this fixed amount of work in less time?
— Answer: execute the instructions in parallel

Time
a=1+ x; a=1+x;b=2+y;|c=3+ z;
=2 +y;
c =3+ z;

Carnegie Mellon I

15745 Intro to Scheduling 3 Todd C. Mowry

Hardware Support for Parallel Execution

* Three forms of parallelism are found in modern machines:

— Pipelining A .
. <= |nstruction Scheduling
— Superscalar Processing
— Multiprocessing G — Automatic Parallelization
(covered later in class)
Carnegie Mellon [
15745 Intro to Scheduling 4 Todd C. Mowry

|
Pipelining

Basic idea:
— break instruction into stages that can be overlapped

Example: simple 5-stage pipeline from early RISC machines

+<—— 1linstruction ——

IF = Instruction Fetch
IF RF EX | ME | WB RF = Decode & Register Fetch
EX = Execute on ALU
ME = Memory Access

Time WB = Write Back to Register File
_—

15745 Intro to Scheduling 5 Todd C. Mowry

Pipelining lllustration

Time

15745: Intro to Scheduling 6 Todd C. Mowry

Pipelining lllustration

GEEE
BERT

Time

* Inagiven cycle, each instruction is in a different stage

Carnegie Mellon I

15745 Intro to Scheduling 7 Todd C. Mowry

Beyond 5-Stage Pipelines: Even More Parallelism

* Should we simply make pipelines deeper and deeper?

RF EX ME WB

g & 2 g
by 2 z z
i g

& & < &
3 F 3

3 2 -3 8
& S & &

— registers between pipeline stages have fixed overheads
* hence diminishing returns with more stages (Amdahl’s Law)
— value of pipe stage unclear if < time for integer add
* However, many consumers think “performance = clock rate”
— perceived need for higher clock rates -> deeper pipelines
— e.g., Pentium 4 processor had a 20-stage pipeline

Carnegie Mellon [

15745: Intro to Scheduling 8 Todd C. Mowry

Beyond Pipelining: “Superscalar” Processing

¢ Basic ldea:

— multiple (independent) instructions can proceed simultaneously through the
same pipeline stages

* Requires additional hardware

— example: “Execute” stage "
e

1
1

Pipe Register
Pipe Register

EX

Pipe Register

3 < £
b g b
& g g
& & 2
] s
-3 2 8
& = &

Abstract Hardware for Hardware for
Representation Scalar Pipeline: 2-way Superscalar:
1ALU 2 ALUs
Carnegie Mellon [
15745: Intro to Scheduling 9 Todd C. Mowry

Superscalar Pipeline lllustration

— Original (scalar) pipeline:
, * Only one instruction in a given pipe
stage at a given time

m Superscalar pipeline:

l IF IRF I £X IME * Multiple instructions in the same pipe
stage at the same time

[1F Jre fex

[ir IrE
l

© {RF

Time

EE

15745: Intro to Scheduling 10 Todd C. Mowry

The Ideal Scheduling Outcome

¢ What prevents us from achieving this ideal?

Before After

T _L1 I
im | I HEEN EEEN B N cycle
Time T v

N cycles

Carnegie Mellon I

15745 Intro to Scheduling 11 Todd C. Mowry

Limitations Upon Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

15745: Intro to Scheduling 12 Todd C. Mowry

Limitation #1: Hardware Resources

Processors have finite resources, and there are often constraints on how these

resources can be used.

Examples:
— Finite issue width
— Limited functional units (FUs) per given instruction type

— Limited pipelining within a given functional unit (FU)

13 Todd C. Mowry

15745: Intro to Scheduling

Limited FUs per Instruction Type

e.g., a 4-way superscalar might only be able to issue up to 2 integer, 1 memory,

and 1 floating-point insts per cycle
More Realistic

Int Mem FP

Original Code Unconstrained
Time T T §
3
24
12
| Bottleneck
[Integer [Empty Slot
. Memory
)] Floating-Point

Carnegie Mellon I

Todd C. Mowry

Finite Issue Width

e Prior to superscalar processing:
— processors only “issued” one instruction per cycle

Even with superscalar processing:
— limit on total # of instructions issued per cycle

Issue Width = infinite Issue Width =4
T T

Time
| B ENNN ENEN N W
T >N/4
4

15745: Intro to Scheduling

15

15745: Intro to Scheduling

Carnegie Mellon [

Todd C. Mowry

Limited Pipelining within a Functional Unit

e.g., only 1 new floating-point division once every 2 cycles

S
Int Mem FP

Original Code
Time =T _"
E 9

[y
N

Integer
] g

. Memory
M Fioating-Point L] empty slot

15745: Intro to Scheduling

chedule with Limited Pipelinin

Carnegie Mellon [

Todd C. Mowry

Limitations Upon Scheduling

1. Hardware Resources
=) . Data Dependences
3. Control Dependences

15745 Intro to Scheduling 17 Todd C. Mowry

Limitation #2: Data Dependences

* If we read or write a data location “too early”, the program may behave
incorrectly.

(Assume that initially, x = 0.)

???k’kﬁ 1; ???k;{ =1 ???KY?‘?
= 2; %= 1;

y = x; ;

I
-

Read-after-Write Write-after-Write Write-after-Read
(“True” dependence) (“Output” dependence) (“Anti” dependence)
Fundamental Can potentially fix through renaming.

(no simple fix)

15745: Intro to Scheduling 18 Todd C. Mowry

|
Why Data Dependences are Challenging

x = a[i];

*P=1;
y = *q;
*r = z;

* which of these instructions can be reordered?

* ambiguous data dependences are very common in practice
— difficult to resolve, despite fancy pointer analysis

Carnegie Mellon I

15745 Intro to Scheduling 19 Todd C. Mowry

Given Ambiguous Data Dependences, What To Do?

*p = 1;
y = *q;
*r = z;

* Conservative approach: don’t reorder instructions
— ensures correct execution
— but may suffer poor performance

* Aggressive approach?
— is there a way to safely reorder instructions?

Carnegie Mellon [

15745: Intro to Scheduling 20 Todd C. Mowry

Hardware Limitations: Multi-cycle Execution Latencies

* Simple instructions often “execute” in one cycle
— (as observed by other instructions in the pipeline)
— e.g., integer addition

* More complex instructions may require multiple cycles
— e.g., integer division, square-root
— cache misses!

* These latencies, when combined with data dependencies, can result in non-trivial
critical path lengths through code

15745: Intro to Scheduling 21 Todd C. Mowry

Limitations Upon Scheduling

1. Hardware Resources
2. Data Dependences
=P 3. Control Dependences

15745: Intro to Scheduling 2 Todd C. Mowry

Limitation #3: Control Dependences

* What do we do when we reach a conditional branch?
— choose a “frequently-executed” path?
— choose multiple paths?

Carnegie Mellon I

15745 Intro to Scheduling 23 Todd C. Mowry

Scheduling Constraints: Summary

* Hardware Resources
— finite set of FUs with instruction type, bandwidth, and latency constraints
— cache hierarchy also has many constraints
* Data Dependences
— can’t consume a result before it is produced
— ambiguous dependences create many challenges
* Control Dependences
— impractical to schedule for all possible paths
— choosing an “expected” path may be difficult
* recovery costs can be non-trivial if you are wrong

Carnegie Mellon [

15745: Intro to Scheduling 24 Todd C. Mowry

Hardware- vs. Compiler-Based Scheduling

* The hardware can also attempt to reschedule instructions (on-the-fly) to improve
performance

¢ What advantages/disadvantages would hardware have (vs. the compiler) when
trying to reason about:
— Hardware Resources
— Data Dependences
— Control Dependences
¢ Which is better:
— doing more of the scheduling work in the compiler?
— doing more of the scheduling work in the hardware?

15745 Intro to Scheduling 25 Todd C. Mowry

|
Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric
<€ >
VLIW In-Order Out-of-Order
(Very Long Superscalar Superscalar

Instruction Word)

e.g.: [tanium e.g.: Original Pentium e.g.: Pentium 4

15745: Intro to Scheduling 26 Todd C. Mowry

VLIW Processors

Motivation:
— if the hardware spends zero (or almost zero) time thinking about scheduling, it
can run faster
Philosophy:
— give full control over scheduling to the compiler
Implementation:
— expose control over all FUs directly to software via a “very long instruction

word”
Int Mem FP Time
_’ JSEEE.
T
CTITT
Carnegie Mellon I
15745: Intro to Scheduling 27 Todd C. Mowry

]
Compiling for VLIW

Predicting Execution Latencies:
— easy for most functional units (latency is fixed)
— but what about memory references?
Data Dependences:
— in “pure” VLIW, the hardware does not check for them
* the compiler takes them into account to produce safe code

while (p !'= NULL) {

a=b+1; if (test(p->val))
c=a-4d;
g->next = p->left;
e=c/3; = p->next;
f=g-e; } P=P !
Example #1 Example #2

Carnegie Mellon [

15745: Intro to Scheduling 28 Todd C. Mowry

|
“VLIW” Today

* Hardware checks for data dependences through memory
¢ Compiler can do a good job with register dependences

Intel/HP Itanium2 Transmeta Crusoe 5400

= Runtime software dynamically
generates VLIW code

Template

| Inst 2 | Inst1 | Inst 0
f——— 128-bitbundle —1

15745: Intro to Scheduling

|
Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric
<€ >
VLW In-Order

Superscalar

15745: Intro to Scheduling 30 Todd C. Mowry

In-Order Superscalar Processors

In contrast with VLIW:
— hardware does full data dependence checking
— hence, no need to encode NOPs for empty slots

. Int Mem FP
Once an instruction cannot be issued, no instructions after Time

it will be issued.
Bottom Line:
* hardware matches code to available resources;

recompilation is not necessary for correctness
e compiler’s role is still important J Empty Slot
* for performance, not correctness!

Carnegie Mellon I

15745 Intro to Scheduling 31 Todd C. Mowry

|
Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric
<€ >
VLW In-Order Out-of-Order
Superscalar Superscalar

Carnegie Mellon [

15745: Intro to Scheduling 32 Todd C. Mowry

Out-of-Order Superscalar Processors

Motivation:
— when an instruction is stuck, perhaps there are subsequent instructions that
can be executed

= *p; <+— suffers expensive cache miss

Yy =%+ 1] «—— stuck waiting on true dependence

} <+— these do not need to wait

Sounds great! But how does this complicate the hardware?

15745: Intro to Scheduling 33 Todd C. Mowry

Out-of-Order Superscalar Processors: Hardware Overview

* fetch & graduate in-order, issue out-of-order

it Complexity of checking
o e dependences increases
exponentially with
\ P issue width!

Branch
Predictor

Oxlc: b = ¢ / 3; |+ issue (out-of-order)

0x18: z = a + 2; |+ issue (out-of-order)

Reorder Buffer

0x14: y = x + 1; [+ can’tissue
0x10: x = *p; <+— issue (cache miss)

15745: Intro to Scheduling 34 Todd C. Mowry

Compiler- vs. Hardware-Centric Scheduling: Bottom Line

Compiler-Centric Hardware-Centric
<€ >
VLW In-Order Out-of-Order
Superscalar Superscalar

* High-end processors will probably remain out-of-order
— moving instructions small distances is probably useless
— BUT, moving instructions large distances may still help

¢ Cheap, power-efficient processors may be in-order/VLIW
— instruction scheduling may have a large impact

Carnegie Mellon I

15745 Intro to Scheduling 35 Todd C. Mowry

Scheduling Roadmap

List Scheduling: Global Scheduling: Software Pipelining:
e within a basic block ® gcross basic blocks ® across loop iterations

Carnegie Mellon [

15745: Intro to Scheduling 36 Todd C. Mowry

