Lecture 16
Register Allocation:

Coalescing

Todd C. Mowry 15-745: Reg Alloc - Coalescing 1

Let’s Focus on Copy Instructions

X = A + B; X =A+ B;
Y = x; —> //deleted * Eimination
Z =Y + 4; Z =X+ 4;

1. Copy Propagation

¢ Optimizations that help optimize away copy instructions:
— Copy Propagation
— Dead Code Elimination

* Can all copy instructions be eliminated using this pair of optimizations?

15-745: Reg Alloc - Coalescing 2 Todd C. Mowry

|
Example Where Copy Propagation Fails

Z

Y + 4;

* Use of copy target has multiple (conflicting) reaching definitions

Carnegie Mellon I

15-745: Reg Alloc - Coalescing 3 Todd C. Mowry

Another Example Where the Copy Instruction Remains

N <
[}
Led

|— Can substitute X for Y here
= Y% 4;|

But not here
* Copy target (Y) still live even after some successful copy propagations

¢ Bottom line:
— copy instructions may still exist when we perform register allocation

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 4 Todd C. Mowry

Copy Instructions and Register Allocation

* What clever thing might the register allocator do for copy instructions?

« If we can assign both the source and target of the copy to the same register:
— then we don’t need to perform the copy instruction at all!
— the copy instruction can be removed from the code
* even though the optimizer was unable to do this earlier
* One way to do this:
— treat the copy source and target as the same node in the interference graph
* then the coloring algorithm will naturally assign them to the same register
— this is called “coalescing”

15-745: Reg Alloc - Coalescing 5 Todd C. Mowry

Simple Example: Without Coalescing

N WM X
I

5
o
A+ 2;
Y + B
return Z;

~.

Valid coloring with 3 registers

* Without coalescing, X and Y can end up in different registers
— cannot eliminate the copy instruction

15-745: Reg Alloc - Coalescing 6 Todd C. Mowry

Example Revisited: With Coalescing

P X
|
o

ey ©
Y

w
|

2;
B
return Z;

+
+

~e

Valid coloring with 3 registers

¢ With coalescing, X and Y are now guaranteed to end up in the same register
— the copy instruction can now be eliminated

* Great! So should we go ahead and do this for every copy instruction?

Carnegie Mellon I

15-745: Reg Alloc - Coalescing 7 Todd C. Mowry

Should We Coalesce X and Y In This Case?

_ . No! That would result
X =A+ B; in incorrect behavior if
Y = X; /this branch is taken.
X = 2;
zZ =Y + X;

e ltislegal to coalesce Xand Y fora “Y = X” copy instruction iff:
— initial definition of ¥’s live range is this copy instruction, AND
— the live ranges of X and Y do not interfere otherwise

e Butjust because it is legal doesn’t mean that it is a good idea...

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 8 Todd C. Mowry

|
Why Coalescing May Be Undesirable, Even If Legal

X =A + B;

... // 100 instructions
Y = X;

- // 100 instructions
Z =Y+ 4;

¢ What s the likely impact of coalescing X and Y on:
— live range size(s)?
 recall our discussion of live range splitting
— colorability of the interference graph?
* Fundamentally, coalescing adds further constraints to the coloring problem
— doesn’t make coloring easier; may make it more difficult
« If we coalesce in this case, we may:
— save a copy instruction, BUT
— cause significant spilling overhead if we can no longer color the graph

15-745: Reg Alloc - Coalescing 9 Todd C. Mowry

When to Coalesce

¢ Goal when coalescing is legal:
— coalesce unless it would make a colorable graph non-colorable
* The bad news:
— predicting colorability is tricky!
« it depends on the shape of the graph
« graph coloring is NP-hard
* Example: assuming 2 registers, should we coalesce X and Y?

2-colorable Not 2-colorable

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 10 Todd C. Mowry

Representing Coalescing Candidates in the Interference Graph

* To decide whether to coalesce, we augment the interference graph
* Coalescing candidates are represented by a new type of interference graph edge:
— dotted lines: coalescing candidates
* try to assign vertices the same color
— (unless that is problematic, in which case they can be given different colors)
— solid lines: interference
* vertices must be assigned different colors

Carnegie Mellon I

15-745: Reg Alloc - Coalescing 11 Todd C. Mowry

How Do We Know When Coalescing Will Not Cause Spilling?

* Key insight:
— Recall from the coloring algorithm:
« we can always successfully N-color a node if its degree is < N

* To ensure that coalescing does not cause spilling:
— check that the degree < N invariant is still locally preserved after coalescing
« if so, then coalescing won’t cause the graph to become non-colorable
— no need to inspect the entire interference graph, or do trial-and-error

* Note:
— We do NOT need to determine whether the full graph is colorable or not
— Just need to check that coalescing does not cause a colorable graph to
become non-colorable

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 12 Todd C. Mowry

Simple and Safe Coalescing Algorithm

¢ We can safely coalesce nodes X and Y if (|X| + |¥|)<N
— Note: |X| = degree of node X counting interference (not coalescing) edges

* Example: @....Q (1| +]¥Y])=(1+2)=3

Degree of coalesced node
can be no larger than 3

— if N>=4, it would always be safe to coalesce these two nodes
« this cannot cause new spilling that would not have occurred with the original graph
— if N<4,itis unclear

How can we (safely) be more aggressive than this?

15-745: Reg Alloc - Coalescing 13 Todd C. Mowry

What About This Example?

¢ AssumeN=3
¢ Isit safe to coalesce X and Y?

(IX] +]Y])=(1+2)=3
(Not less than N)

* Notice: X and Y share a common (interference) neighbor: node A
— hence the degree of the coalesced X/Y node is actually 2 (not 3)
— therefore coalescing X and Y is guaranteed to be safe when N =3
* How can we adjust the algorithm to capture this?

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 14 Todd C. Mowry

Another Helpful Insight

* Colors are not assigned until nodes are popped off the stack
— nodes with degree < N are pushed on the stack first
— when a node is popped off the stack, we know that it can be colored
* because the number of potentially conflicting neighbors must be < N
* Spilling only occurs if there is no node with degree < N to push on the stack

ONO | =5

() (x) =5
° ° ° o 2-colorable after

coalescing X and Y?

Example: (N=2)

Carnegie Mellon I

15-745: Reg Alloc - Coalescing 15 Todd C. Mowry

|
Building on This Insight

* When would coalescing cause the stack pushing (aka “simplification”) to get stuck?
1. coalesced node must have a degree >= N
* otherwise, it can be pushed on the stack, and we are not stuck
2. AND it must have at least N neighbors that each have a degree >= N
« otherwise, all neighbors with degree < N can be pushed before this node
— reducing this node’s degree below N (and therefore we aren’t stuck)

* To coalesce more aggressively (and safely), let’s exploit this second requirement
— which involves looking at the degree of a coalescing candidate’s neighbors
* not just the degree of the coalescing candidates themselves

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 16 Todd C. Mowry

Briggs’s Algorithm

¢ Nodes X and Y can be coalesced if:
— (number of neighbors of X/Y with degree >= N) <N

* Works because:
— all other neighbors can be pushed on the stack before this node,
— and then its degree is < N, so then it can be pushed

¢ Example: (N=2)

X/Y

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 17 Todd C. Mowry

Briggs’s Algorithm

¢ Nodes X and Y can be coalesced if:

— (number of neighbors of X/Y with degree >= N) <N X/Y

* More extreme example: (N = 2) i
H

oo :

() :

D

() () c

® ® .

A

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 18 Todd C. Mowry

George’s Algorithm

Motivation:
* imagine that X has a very high degree, but Y has a much smaller degree
— (perhaps because X has a large live range)

¢ With Briggs’s algorithm, we would inspect all neighbors both X and Y
— but X has a lot of neighbors!
* Can we get away with just inspecting the neighbors of Y?
— showing that coalescing makes coloring no worse than it was given X?

Carnegie Mellon I

15-745: Reg Alloc - Coalescing 19 Todd C. Mowry

George’s Algorithm

¢ Coalescing X and Y does no harm if:
— foreach neighbor T of ¥, either:
1. degree of Tis<N, or <& similar to Briggs: T will be pushed before X/Y

2. Tinterferes with X € hence no change compared with coloring X

¢ Example: (N=2)

Carnegie Mellon [

15-745: Reg Alloc - Coalescing 20 Todd C. Mowry

|
Summary

* Coalescing can enable register allocation to eliminate copy instructions
— if both source and target of copy can be allocated to the same register
* However, coalescing must be applied with care to avoid causing register spilling
¢ Augment the interference graph:
— dotted lines for coalescing candidate edges
— try to allocate to same register, unless this may cause spilling
¢ Coalescing Algorithms:
— simply based upon degree of coalescing candidate nodes (X and Y)
— Briggs’s algorithm
* look at degree of neighboring nodes of X and Y
— George’s algorithm
« asymmetrical: look at neighbors of Y (degree and interference with X)

15-745: Reg Alloc - Coalescing 21 Todd C. Mowry

