Lecture 16
Register Allocation:

Coalescing

T Carnegic Metlon [N

Todd C. Mowry 15-745: Reg Alloc - Coalescing 1



Let’s Focus on Copy Instructions

X =A + B; X =A + B;
Y = X; —> //deleted ” Eimination
Z =Y + 4; Z =X + 4;

N\

1. Copy Propagation

e Optimizations that help optimize away copy instructions:
— Copy Propagation
— Dead Code Elimination

e Can all copy instructions be eliminated using this pair of optimizations?

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 2 Todd C. Mowry



Example Where Copy Propagation Fails

X = A + B;
Y = C;

Y = X;
Z =Y + 4;

e Use of copy target has multiple (conflicting) reaching definitions

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 3 Todd C. Mowry



Another Example Where the Copy Instruction Remains

X = A + B;
Y = X; — Can substitute X for Y here
Z = YF 4;

I Y = ...,
C=Y+D

But not here

* Copy target (¥) still live even after some successful copy propagations

e Bottom line:

— copy instructions may still exist when we perform register allocation

I Carnegic Metion [N

15-745: Reg Alloc - Coalescing 4 Todd C. Mowry



Copy Instructions and Register Allocation

* What clever thing might the register allocator do for copy instructions?

* If we can assign both the source and target of the copy to the same register:
— then we don’t need to perform the copy instruction at all!
— the copy instruction can be removed from the code
* even though the optimizer was unable to do this earlier
* One way to do this:

— treat the copy source and target as the same node in the interference graph
* then the coloring algorithm will naturally assign them to the same register
— this is called “coalescing”

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 5 Todd C. Mowry



Simple Example: Without Coalescing

D 'Y D Y

~oe

Valid coloring with 3 registers

N W < P X
i1l

K P X o

+ +

wN

return Z;

e Without coalescing, X and ¥ can end up in different registers
— cannot eliminate the copy instruction

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 6 Todd C. Mowry



Example Revisited: With Coalescing

X = ..

A =5;
T o
B =A+ 2;

Z =Y + B;

return Z;
Valid coloring with 3 registers

* With coalescing, X and Y are now guaranteed to end up in the same register
— the copy instruction can now be eliminated

e Great! So should we go ahead and do this for every copy instruction?

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 7 Todd C. Mowry



Should We Coalesce X and Y In This Case?

_ . No! That would result
X =A+ Bj in incorrect behavior if
Y = X; /this branch is taken.
X = 2;
Z =Y + X;

* |tislegal tocoalesce Xand ¥ fora “Y X” copy instruction iff:
— initial definition of ¥’s live range is this copy instruction, AND

— the live ranges of X and Y do not interfere otherwise

* Butjust because it is legal doesn’t mean that it is a good idea...

I Carnegic Metion [N

15-745: Reg Alloc - Coalescing 8 Todd C. Mowry



-]
Why Coalescing May Be Undesirable, Even If Legal

X =A + B;
... // 100 instructions
Y = X;

.. // 100 instructions
Z =Y + 4;

 Whatis the likely impact of coalescing X and Y on:
— live range size(s)?
* recall our discussion of live range splitting
— colorability of the interference graph?
* Fundamentally, coalescing adds further constraints to the coloring problem
— doesn’t make coloring easier; may make it more difficult
* |f we coalesce in this case, we may:
— save a copy instruction, BUT
— cause significant spilling overhead if we can no longer color the graph

I Carnegic Metion [N

15-745: Reg Alloc - Coalescing 9 Todd C. Mowry



When to Coalesce

* Goal when coalescing is legal:
— coalesce unless it would make a colorable graph non-colorable
* The bad news:
— predicting colorability is tricky!
* it depends on the shape of the graph
e graph coloring is NP-hard

 Example: assuming 2 registers, should we coalesce X and ¥?

2-colorable Not 2-colorable

Carnegie Mellon -

15-745: Reg Alloc - Coalescing 10 Todd C. Mowry



Representing Coalescing Candidates in the Interference Graph

* To decide whether to coalesce, we augment the interference graph
* Coalescing candidates are represented by a new type of interference graph edge:
— dotted lines: coalescing candidates

* try to assign vertices the same color
— (unless that is problematic, in which case they can be given different colors)

— solid lines: interference
» vertices must be assigned different colors

N W < P X
| I |
K P X O

+ +
W N

return Z;

Carnegie Mellon -

15-745: Reg Alloc - Coalescing 11 Todd C. Mowry




-
How Do We Know When Coalescing Will Not Cause Spilling?

e Key insight:

— Recall from the coloring algorithm:

* we can always successfully N-color a node if its degree is < N

* To ensure that coalescing does not cause spilling:
— check that the degree < N invariant is still locally preserved after coalescing
* if so, then coalescing won’t cause the graph to become non-colorable

— no need to inspect the entire interference graph, or do trial-and-error

* Note:

— We do NOT need to determine whether the full graph is colorable or not

— Just need to check that coalescing does not cause a colorable graph to
become non-colorable

I Carnegic Metion [N

15-745: Reg Alloc - Coalescing 12 Todd C. Mowry



Simple and Safe Coalescing Algorithm

* We can safely coalesce nodes Xand Y if (|X]| + |¥|) <N
— Note: |X| = degree of node X counting interference (not coalescing) edges

e Example:
— (1] +1¥])=(1+2)=3

Degree of coalesced node
. can be no larger than 3

— if N>=4, it would always be safe to coalesce these two nodes
 this cannot cause new spilling that would not have occurred with the original graph

— ifN<4,itis unclear

How can we (safely) be more aggressive than this?

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 13 Todd C. Mowry



What About This Example?

* Assume N =3
e |sit safe to coalesce X and ¥?

(IX] +]¥[)=(1+2)=3
(Not less than N)

* Notice: X and Y share a common (interference) neighbor: node A
— hence the degree of the coalesced X/Y node is actually 2 (not 3)
— therefore coalescing X and Y is guaranteed to be safe when N =3
* How can we adjust the algorithm to capture this?

Carnegie Mellon -

15-745: Reg Alloc - Coalescing 14 Todd C. Mowry



Another Helpful Insight

* Colors are not assigned until nodes are popped off the stack
— nodes with degree < N are pushed on the stack first

— when a node is popped off the stack, we know that it can be colored
* because the number of potentially conflicting neighbors must be <N

e Spilling only occurs if there is no node with degree < N to push on the stack

°° Qe IX] =5

Y| =5

G ° e e 2-colorable after
coalescing X and ¥?
Carnegie Mellon -

15-745: Reg Alloc - Coalescing 15 Todd C. Mowry

 Example: (N=2)




-]
Building on This Insight

When would coalescing cause the stack pushing (aka “simplification”) to get stuck?
1. coalesced node must have a degree >= N
* otherwise, it can be pushed on the stack, and we are not stuck

2. AND it must have at least N neighbors that each have a degree >=N
* otherwise, all neighbors with degree < N can be pushed before this node
— reducing this node’s degree below N (and therefore we aren’t stuck)

* To coalesce more aggressively (and safely), let’s exploit this second requirement

— which involves looking at the degree of a coalescing candidate’s neighbors
* not just the degree of the coalescing candidates themselves

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 16 Todd C. Mowry



Briggs’s Algorithm

* Nodes X and Y can be coalesced if:
— (number of neighbors of X/Y with degree >=N) < N

* Works because:
— all other neighbors can be pushed on the stack before this node,
— and then its degree is < N, so then it can be pushed

e Example: (N =2)

Carnegie Mellon -

15-745: Reg Alloc - Coalescing 17 Todd C. Mowry



Briggs’s Algorithm

* Nodes X and Y can be coalesced if:

— (number of neighbors of X/Y with degree >=N) < N X/Y
* More extreme example: (N = 2) i
H
ORONe e
(2, F
D
(2, © :
() (& B
A
Carnegie Mellon [

15-745: Reg Alloc - Coalescing 18 Todd C. Mowry



George’s Algorithm

Motivation:

* imagine that X has a very high degree, but ¥ has a much smaller degree
— (perhaps because X has a large live range)

"

e With Briggs’s algorithm, we would inspect all neighbors both Xand ¥
— but X has a lot of neighbors!
e Can we get away with just inspecting the neighbors of ¥?
— showing that coalescing makes coloring no worse than it was given X?

Carnegie Mellon -

15-745: Reg Alloc - Coalescing 19 Todd C. Mowry



George’s Algorithm

 Coalescing X and Y does no harm if:

— foreach neighbor T of ¥, either:
1. degree of Tis<N, or € similar to Briggs: T will be pushed before X/Y

2. Tinterferes with X € hence no change compared with coloring X

 Example: (N=2)

Carnegie Mellon -

15-745: Reg Alloc - Coalescing 20 Todd C. Mowry



Summary

e Coalescing can enable register allocation to eliminate copy instructions

— if both source and target of copy can be allocated to the same register
 However, coalescing must be applied with care to avoid causing register spilling
* Augment the interference graph:

— dotted lines for coalescing candidate edges

— try to allocate to same register, unless this may cause spilling
e Coalescing Algorithms:

— simply based upon degree of coalescing candidate nodes (X and ¥)
— Briggs’s algorithm
* |ook at degree of neighboring nodes of Xand Y

— George’s algorithm
* asymmetrical: look at neighbors of ¥ (degree and interference with X)

I Carnegic Metlon [N

15-745: Reg Alloc - Coalescing 21 Todd C. Mowry



