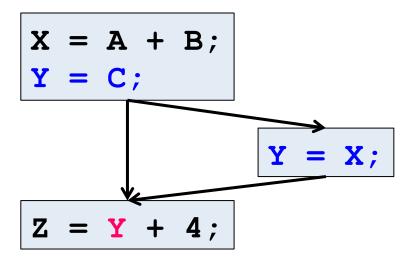
Lecture 16 Register Allocation: Coalescing

Let's Focus on Copy Instructions

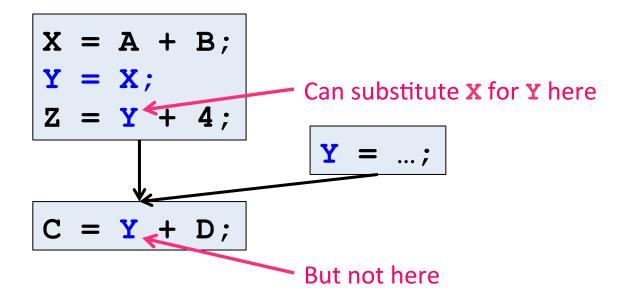
- Optimizations that help optimize away copy instructions:
 - Copy Propagation
 - Dead Code Elimination
- Can all copy instructions be eliminated using this pair of optimizations?

Example Where Copy Propagation Fails



• Use of copy target has multiple (conflicting) reaching definitions

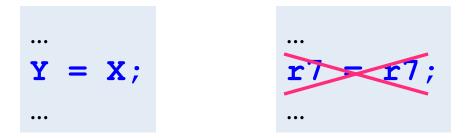
Another Example Where the Copy Instruction Remains



- Copy target (Y) still live even after some successful copy propagations
- Bottom line:
 - copy instructions may still exist when we perform register allocation

Copy Instructions and Register Allocation

What clever thing might the register allocator do for copy instructions?



- If we can assign both the source and target of the copy to the same register:
 - then we don't need to perform the copy instruction at all!
 - the copy instruction can be removed from the code
 - even though the optimizer was unable to do this earlier
- One way to do this:
 - treat the copy source and target as the same node in the interference graph
 - then the coloring algorithm will naturally assign them to the same register
 - this is called "coalescing"

Simple Example: Without Coalescing

```
X = ...;

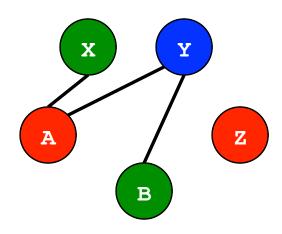
A = 5;

Y = X;

B = A + 2;

Z = Y + B;

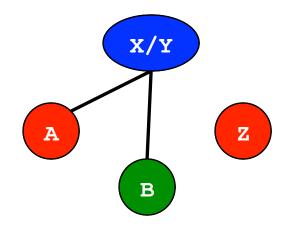
return Z;
```



Valid coloring with 3 registers

- Without coalescing, X and Y can end up in different registers
 - cannot eliminate the copy instruction

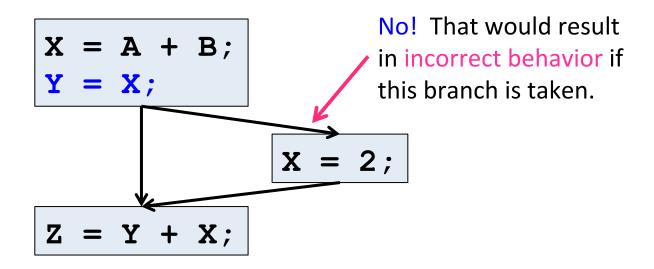
Example Revisited: With Coalescing



Valid coloring with 3 registers

- With coalescing, **X** and **Y** are now guaranteed to end up in the same register
 - the copy instruction can now be eliminated
- Great! So should we go ahead and do this for every copy instruction?

Should We Coalesce X and Y In This Case?



- It is legal to coalesce X and Y for a "Y = X" copy instruction iff:
 - initial definition of Y's live range is this copy instruction, AND
 - the live ranges of X and Y do not interfere otherwise
- But just because it is legal doesn't mean that it is a good idea...

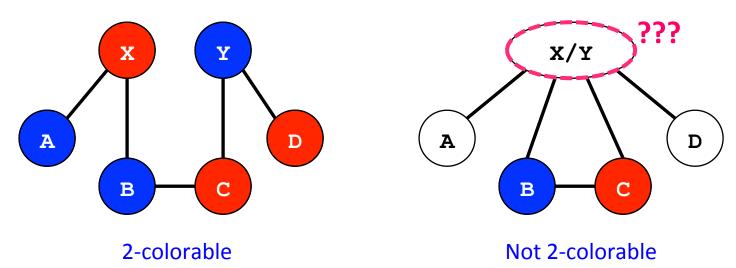
Why Coalescing May Be Undesirable, Even If Legal

```
X = A + B;
... // 100 instructions
Y = X;
... // 100 instructions
Z = Y + 4;
```

- What is the likely impact of coalescing x and y on:
 - live range size(s)?
 - recall our discussion of live range splitting
 - colorability of the interference graph?
- Fundamentally, coalescing adds further constraints to the coloring problem
 - doesn't make coloring easier; may make it more difficult
- If we coalesce in this case, we may:
 - save a copy instruction, BUT
 - cause significant spilling overhead if we can no longer color the graph

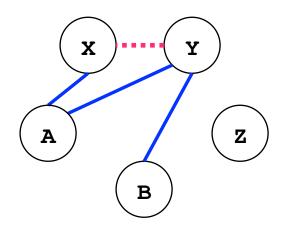
When to Coalesce

- Goal when coalescing is legal:
 - coalesce unless it would make a colorable graph non-colorable
- The bad news:
 - predicting colorability is tricky!
 - it depends on the shape of the graph
 - · graph coloring is NP-hard
- Example: assuming 2 registers, should we coalesce x and x?



Representing Coalescing Candidates in the Interference Graph

- To decide whether to coalesce, we augment the interference graph
- Coalescing candidates are represented by a new type of interference graph edge:
 - dotted lines: coalescing candidates
 - try to assign vertices the same color
 - (unless that is problematic, in which case they can be given different colors)
 - solid lines: interference
 - vertices must be assigned different colors



How Do We Know When Coalescing Will Not Cause Spilling?

Key insight:

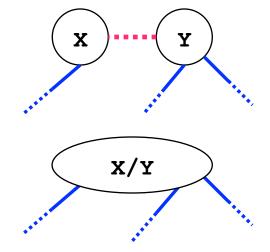
- Recall from the coloring algorithm:
 - we can always successfully N-color a node if its degree is < N
- To ensure that coalescing does not cause spilling:
 - check that the degree < N invariant is still locally preserved after coalescing
 - if so, then coalescing won't cause the graph to become non-colorable
 - no need to inspect the entire interference graph, or do trial-and-error

• <u>Note</u>:

- We do NOT need to determine whether the full graph is colorable or not
- Just need to check that coalescing does not cause a colorable graph to become non-colorable

Simple and Safe Coalescing Algorithm

- We can safely coalesce nodes X and Y if (|X| + |Y|) < N
 - Note: $|\mathbf{x}|$ = degree of node \mathbf{x} counting interference (not coalescing) edges
- <u>Example</u>:



$$(|X| + |Y|) = (1 + 2) = 3$$

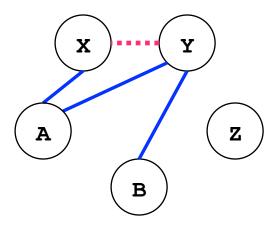
Degree of coalesced node can be no larger than 3

- if N >= 4, it would always be safe to coalesce these two nodes
 - this cannot cause new spilling that would not have occurred with the original graph
- if N < 4, it is unclear

How can we (safely) be more aggressive than this?

What About This Example?

- Assume N = 3
- Is it safe to coalesce X and Y?

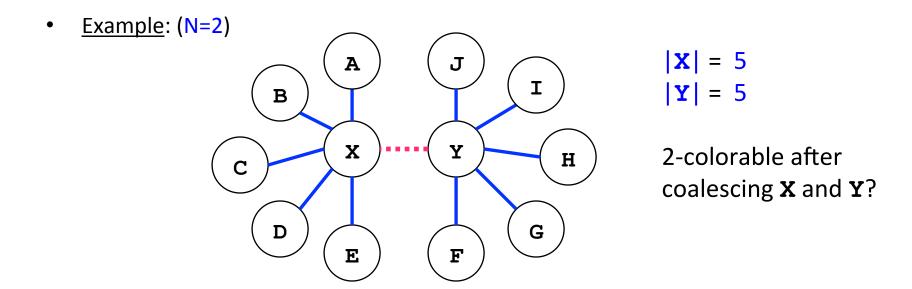


(|X| + |Y|) = (1 + 2) = 3(Not less than N)

- Notice: X and Y share a common (interference) neighbor: node A
 - hence the degree of the coalesced x/Y node is actually 2 (not 3)
 - therefore coalescing \mathbf{X} and \mathbf{Y} is guaranteed to be safe when N=3
- How can we adjust the algorithm to capture this?

Another Helpful Insight

- Colors are not assigned until nodes are popped off the stack
 - nodes with degree < N are pushed on the stack first
 - when a node is popped off the stack, we know that it can be colored
 - because the number of potentially conflicting neighbors must be < N
- Spilling only occurs if there is no node with degree < N to push on the stack

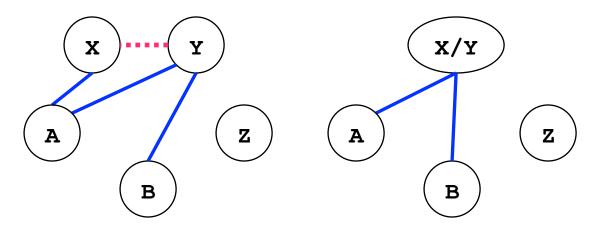


Building on This Insight

- When would coalescing cause the stack pushing (aka "simplification") to get stuck?
 - coalesced node must have a degree >= N
 - otherwise, it can be pushed on the stack, and we are not stuck
 - 2. AND it must have at least N neighbors that each have a degree >= N
 - otherwise, all neighbors with degree < N can be pushed before this node
 - reducing this node's degree below N (and therefore we aren't stuck)
- To coalesce more aggressively (and safely), let's exploit this second requirement
 - which involves looking at the degree of a coalescing candidate's neighbors
 - not just the degree of the coalescing candidates themselves

Briggs's Algorithm

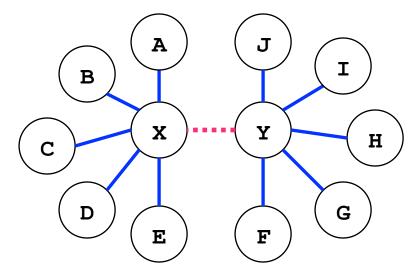
- Nodes X and Y can be coalesced if:
 - (number of neighbors of x/y with degree >= N) < N
- Works because:
 - all other neighbors can be pushed on the stack before this node,
 - and then its degree is < N, so then it can be pushed
- <u>Example</u>: (N = 2)



X/Y
В
A
Z

Briggs's Algorithm

- Nodes x and y can be coalesced if:
 - (number of neighbors of x/y with degree >= N) < N
- More extreme example: (N = 2)

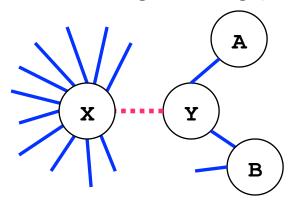


X/Y
J
I
Н
G
F
E
D
С
В
A

George's Algorithm

Motivation:

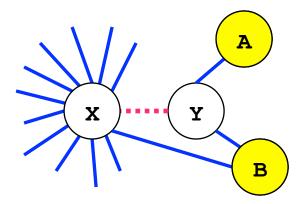
- imagine that **x** has a very high degree, but **Y** has a much smaller degree
 - (perhaps because **x** has a large live range)



- With Briggs's algorithm, we would inspect all neighbors both x and y
 - but **x** has a lot of neighbors!
- Can we get away with just inspecting the neighbors of Y?
 - showing that coalescing makes coloring no worse than it was given x?

George's Algorithm

- Coalescing x and y does no harm if:
 - foreach neighbor **T** of **Y**, either:
 - 1. degree of \mathbf{T} is < N, or \leftarrow similar to Briggs: \mathbf{T} will be pushed before \mathbf{X}/\mathbf{Y}
 - 2. \mathbf{T} interferes with \mathbf{X} \leftarrow hence no change compared with coloring \mathbf{X}
- <u>Example</u>: (N=2)



<u>Summary</u>

- Coalescing can enable register allocation to eliminate copy instructions
 - if both source and target of copy can be allocated to the same register
- However, coalescing must be applied with care to avoid causing register spilling
- Augment the interference graph:
 - dotted lines for coalescing candidate edges
 - try to allocate to same register, unless this may cause spilling
- Coalescing Algorithms:
 - simply based upon degree of coalescing candidate nodes (X and Y)
 - Briggs's algorithm
 - look at degree of neighboring nodes of X and Y
 - George's algorithm
 - asymmetrical: look at neighbors of Y (degree and interference with X)