Lecture 15

Register Allocation & Spilling

|. Introduction

Il. Abstraction and the Problem
Ill. Algorithm

V. Spilling

Reading: ALSU 8.8.4
T carnegie Metton [

Todd C. Mowry 15-745: Register Allocation 1

-
|. Motivation

* Problem
— Allocation of variables (pseudo-registers) to hardware registers in a procedure

* Avery important optimization!
— Directly reduces running time
* (memory access = register access)

— Useful for other optimizations
* e.g. CSE assumes old values are kept in registers.

15-745: Register Allocation 2 Todd C. Mowry

Goals

* Find an allocation for all pseudo-registers, if possible.

* If there are not enough registers in the machine, choose registers to spill to
memory

15-745: Register Allocation 3 Todd C. Mowry

Example

A = .
IF A goto L1

—

L1: C

w
nn
g
I
>

O
I

D

15-745: Register Allocation 4 Todd C. Mowry

II. An Abstraction for Allocation & Assighment

e Intuitively

— Two pseudo-registers interfere if at some point in the program they cannot
both occupy the same register.

* Interference graph: an undirected graph, where
— nodes = pseudo-registers

— thereis an edge between two nodes if their corresponding
pseudo-registers interfere

 What is not represented
— Extent of the interference between uses of different variables
— Where in the program is the interference

15-745: Register Allocation 5 Todd C. Mowry

Register Allocation and Coloring

« Agraphis n-colorable if:

— every node in the graph can be colored with one of the n colors such that two
adjacent nodes do not have the same color.

* Assigning n register (without spilling) = Coloring with n colors

— assign a node to a register (color) such that no two adjacent nodes are
assigned same registers(colors)

* Is spilling necessary? = Is the graph n-colorable?

 To determine if a graph is n-colorable is NP-complete, for n>2
— Too expensive
— Heuristics

15-745: Register Allocation 6 Todd C. Mowry

-]
ll. Algorithm

Step 1. Build an interference graph
a. refining notion of a node
b. finding the edges

Step 2. Coloring
— use heuristics to try to find an n-coloring
* Success:
— colorable and we have an assignment

* Failure:
— graph not colorable, or
— graph is colorable, but it is too expensive to color

15-745: Register Allocation 7 Todd C. Mowry

Step 1a. Nodes in an Interference Graph

A = .
IF A goto L1

B = L1: C = .
= A = A
D = D =
B + D =D+ C
A =2

I
>

15-745: Register Allocation 8 Todd C. Mowry

Live Ranges and Merged Live Ranges

 Motivation: to create an interference graph that is easier to color
— Eliminate interference in a variable’s “dead” zones.

— Increase flexibility in allocation:
* can allocate same variable to different registers

* Alive range consists of a definition and all the points in a program (e.g. end of an
instruction) in which that definition is live.

— How to compute a live range?

 Two overlapping live ranges for the same variable must be merged

a = .. a = ..

\/

.= a

15-745: Register Allocation 9 Todd C. Mowry

Example (Revisited)

Live Variables

Reaching Definitions A=.. (A) {,}A {,}A
. (A
IF Agoto L1 EAi EAﬁ
{A} {A} B=.. (B, | | .
{AB} {A,B) A L: 7y (A}
C=..(C,)
e A L1 A e e
=122 D=.. (Dl) {D} {A1'C1'D1}
- '{{A,B,c,D,D}
A=2 (A) {AD) { A;Bi,Ci,Di,Dz} Merge

{A,D} {A,,B1,C1,D4,D,}
{D} {AZIB]_/C]_rD]_/Dz}

ret D

Carnegie Mellon -

15-745: Register Allocation 10 Todd C. Mowry

Merging Live Ranges

* Merging definitions into equivalence classes
— Start by putting each definition in a different equivalence class

— For each point in a program:

» if (i) variable is live, and (ii) there are multiple reaching definitions for the variable,
then:

— merge the equivalence classes of all such definitions into one equivalence
class

* From now on, refer to merged live ranges simply as live ranges
— merged live ranges are also known as “webs”

15-745: Register Allocation 11 Todd C. Mowry

-
Step 1b. Edges of Interference Graph

* Intuitively:
— Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program.
— Algorithm:
* At each pointin the program:
— enter an edge for every pair of live ranges at that point.

* An optimized definition & algorithm for edges:
— Algorithm:
* check for interference only at the start of each live range
— Faster
— Better quality

15-745: Register Allocation 12 Todd C. Mowry

15-745: Register Allocation

Example 2

IF Q goto L1

13

Carnegie Mellon -

Todd C. Mowry

-
Step 2. Coloring

* Reminder: coloring for n > 2 is NP-complete

* QObservations:

— anode with degree < n =
* can always color it successfully, given its neighbors’ colors

— anode with degree =n=

— anode with degree > n =

15-745: Register Allocation 14 Todd C. Mowry

-]
Coloring Algorithm

e Algorithm:

— lterate until stuck or done

* Pick any node with degree < n

* Remove the node and its edges from the graph
— If done (no nodes left)

* reverse process and add colors

 Example (n = 3):

B

T

E A C

D

* Note: degree of a node may drop in iteration
* Avoids making arbitrary decisions that make coloring fail

15-745: Register Allocation 15 Todd C. Mowry

-
What Does Coloring Accomplish?

* Done:

— colorable, also obtained an assignment
* Stuck:

— colorable or not?

B

15-745: Register Allocation 16 Todd C. Mowry

Extending Coloring: Design Principles

* A pseudo-register is

— Colored successfully: allocated a hardware register
— Not colored: left in memory

* Objective function

— Cost of an uncolored node:
* proportional to number of uses/definitions (dynamically)
* estimate by its loop nesting

— Obijective: minimize sum of cost of uncolored nodes

e Heuristics

— Benefit of spilling a pseudo-register:
* increases colorability of pseudo-registers it interferes with
* can approximate by its degree in interference graph

— Greedy heuristic

* spill the pseudo-register with lowest cost-to-benefit ratio, whenever spilling is
necessary

15-745: Register Spilling 17 Todd C. Mowry

-]
Spilling to Memory

e CISC architectures
— can operate on data in memory directly
— memory operations are slower than register operations

e RISC architectures

— machine instructions can only apply to registers
— Use

* must first load data from memory to a register before use
— Definition

* must first compute RHS in a register

* store to memory afterwards

— Even if spilled to memory, needs a register at time of use/definition

15-745: Register Spilling 18 Todd C. Mowry

-]
Review: Coloring Algorithm (Without Spilling)

* Attempt to Color Graph

Build interference graph
Iterate until there are no nodes left
If there exists a node v with less than n neighbor
place v on stack to register allocate
else
return (coloring heuristics fail)
remove v and its edges from graph

* Assign registers

While stack is not empty
Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

15-745: Register Spilling 19 Todd C. Mowry

-]
Chaitin: Coloring and Spilling

* Identify spilling

Build interference graph
Iterate until there are no nodes left
If there exists a node v with less than n neighbor
place v on stack to register allocate
else
v = node with highest degree-to-cost ratio
mark v as spilled
remove v and its edges from graph

* Spilling may require use of registers; change interference graph

While there is spilling
rebuild interference graph and perform step above

* Assign registers

While stack is not empty
Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

15-745: Register Spilling 20 Todd C. Mowry

-
Spilling

 What should we spill?
— Something that will eliminate a lot of interference edges
— Something that is used infrequently
— Maybe something that is live across a lot of calls?

* One Heuristic:
— spill cheapest live range (aka “web”)
— Cost = [(# defs & uses)*10/copnest-depth] /degree

15-745: Register Spilling 21 Todd C. Mowry

-
Quality of Chaitin’s Algorithm

e Giving up too quickly

B
/\
A C
\/
D

e An optimization: “Prioritize the coloring”
— Still eliminate a node and its edges from graph
— Do not commit to “spilling” just yet

— Try to color again in assignment phase.

15-745: Register Spilling 22 Todd C. Mowry

Splitting Live Ranges

— Increase flexibility in allocation:

Recall: Split pseudo-registers into live ranges to create an interference graph that
is easier to color

Eliminate interference in a variable’s “dead” zones.

* can allocate same variable to different registers

A =

IF A goto L]

15-745: Register Spilling

Carnegie Mellon -
Todd C. Mowry

-
Insight

* Split a live range into smaller regions (by paying a small cost) to create an
interference graph that is easier to color
— Eliminate interference in a variable’s “nearly dead” zones.
* Cost: Memory loads and stores
— Load and store at boundaries of regions with no activity
* # active live ranges at a program point can be > # registers

— Can allocate same variable to different registers
* Cost: Register operations
— aregister copy between regions of different assignments
* # active live ranges cannot be > # registers

15-745: Register Spilling 24 Todd C. Mowry

Examples

Example 1:

FOR i = 0 TO 10

FOR j = 0 TO 10000
A=A+
(does not use B)

FOR j = 0 TO 10000
B =B +
(does not use A)

Example 2:

O:

/\

= C:
=a+b =Qa+cC

=+C

Todd C. Mowry

15-745: Register Spilling 25

-]
Live Range Splitting

* When do we apply live range splitting?
 Which live range to split?
Where should the live range be split?

 How to apply live-range splitting with coloring?
— Advantage of coloring:
» defers arbitrary assignment decisions until later

— When coloring fails to proceed, may not need to split live range
* degree of a node >= n does not mean that the graph definitely is not colorable

— Interference graph does not capture positions of a live range

15-745: Register Spilling 26 Todd C. Mowry

-
One Algorithm

e Observation: spilling is absolutely necessary if

— number of live ranges active at a program point > n

* Apply live-range splitting before coloring
— Identify a point where number of live ranges > n

— For each live range active around that point:
* find the outermost “block construct” that does not access the variable

— Choose a live range with the largest inactive region
— Split the inactive region from the live range

15-745: Register Spilling 27 Todd C. Mowry

Summary

* Problems:
— Given n registers in a machine, is spilling avoided?
— Find an assignment for all pseudo-registers, whenever possible.

e Solution:

— Abstraction: an interference graph
* nodes: live ranges
* edges: presence of live range at time of definition
— Register Allocation and Assignment problems
* equivalent to n-colorability of interference graph
=>» NP-complete
— Heuristics to find an assignment for n colors
e successful: colorable, and finds assignment
* not successful: colorability unknown & no assignment

15-745: Register Allocation 28 Todd C. Mowry

