Partial Redundancy Elimination

* Global code motion optimization
¢ Remove partially redundant expressions
*  Loop invariant code motion
*  Can be extended to do Strength Reduction

* No loop analysis needed
* Bidirectional flow problem
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Redundancy

* A Common Subexpression is a Redundant Computation

tl=a+b t2 =a+b

e

t3 =a+b

¢ Occurrence of expression E at P is redundant if E is available there:
— Eis evaluated along every path to P, with no operands redefined since.
* Redundant expression can be eliminated
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Partial Redundancy

¢ Partially Redundant Computation

tl=a+b

— =

t3=a+b

¢ Occurrence of expression E at P is partially redundant if E is partially available
there:
— Eis evaluated along at least one path to P, with no operands redefined since.

* Partially redundant expression can be eliminated if we can insert computations to
make it fully redundant.
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Loop Invariants are Partial Redundancies

* Loop invariant expression is partially redundant

a = ..

tl=a+b

* As before, partially redundant computation can be eliminated if we insert
computations to make it fully redundant.

* Remaining copies can be eliminated through copy propagation or more complex
analysis of partially redundant assignments.
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Partial Redundancy Elimination

¢ The Method:
1. Insert Computations to make partially redundant expression(s) fully
redundant.

2. Eliminate redundant expression(s).

* Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

* For this lecture, we assume one expression of interest, a+b.

— In practice, with some restrictions, can do many expressions in parallel.
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Which Occurrences Might Be Eliminated?

* InCSE,
— Eisavailable at P if it is previously evaluated along every path to P, with no
subsequent redefinitions of operands.

— If so, we can eliminate computation at P.

* InPRE,

— Eis partially available at P if it is previously evaluated along at least one path
to P, with no subsequent redefinitions of operands.

— If so, we might be able to eliminate computation at P, if we can insert
computations to make it fully redundant.

*  Occurrences of E where E is partially available are candidates for elimination.

Finding Partially Available Expressions

* Forward flow problem
— Lattice ={ 0, 1}, meet is union (U), Top = 0 (not PAVAIL), entry = 0

« PAVOUT[i] = (PAVIN[i] - KILL[i]) U AVLOC[i]

0 i=entry
+ PAVIN[i] =
U PAVOUT[p] otherwise
p Epreds(i)
*  Fora block,
* Expression is locally available (AVLOC) if downwards exposed.

* Expression is killed (KILL) if any assignments to operands.

b b '

a = . .=a+b
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Partial Availability Example
* For expression a+b.
a = .. KILL=1 PAVIN =
AVLOC =0 PAVOUT =
tl=a+b KILL=0 PAVIN =
AVLOC=1 PAVOUT =
a = .. KILL=1 PAVIN =
t2 =a +b AVLOC=1 PAVOUT =
¢ Occurrence in loop is partially redundant.
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Where Can We Insert Computations?

« Safety: never introduce a new expression along any path.

tl =a+b

T, —

t3 =a+b

— Insertion could introduce exception, change program behavior.
— If we can add a new basic block, can insert safely in most cases.
— Solution: insert expression only where it is anticipated.

* Performance: never increase the # of computations on any path.

— Under simple model, guarantees program won’t get worse.
— Reality: might increase register lifetimes, add copies, lose.
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Finding Anticipated Expressions

* Backward flow problem
— Lattice ={0, 1}, meet is intersection (N), top = 1 (ANT), exit =0

« ANTIN[i] = ANTLOC[i] U (ANTOUT(i] - KILL[i])
0 i=exit
+ ANTOUT[i] =
M ANTIN[s] otherwise

s Esucc(i)
¢ For ablock,
« Expression locally anticipated (ANTLOC) if upwards exposed.

. . '

a = . .=a+b
=a+b a =
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Anticipation Example

* For expression a+b.

a = .. KILL=1 ANTIN =
ANTLOC=0 ANTOUT =

tl=a+b KILL=0 ANTIN =
ANTLOC=1  ANTOUT=

a = . KILL=1 ANTIN =
t2=a+b ANTLOC=0  ANTOUT =

* Expression is anticipated at end of first block.
* Computation may be safely inserted there.
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Where Do We Want to Insert Computations?

* Morel-Renvoise and variants: “Placement Possible”
— Dataflow analysis shows where to insert:
* PPIN = “Placement possible at entry of block or before.”
* PPOUT = “Placement possible at exit of block or before.”
— Insert at earliest place where PP = 1.

Only place at end of blocks,

* PPIN really means “Placement possible or not necessary in each predecessor
block.”

— Don’t need to insert where expression is already available.

« INSERT[i] = PPOUT[i] N (= PPIN[i] U KILL[i]) N =AVOUTIi]

Remove (upwards-exposed) computations where PPIN=1.

* DELETE[i] = PPIN[i] N ANTLOCIi]
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Where Do We Want to Insert? Example

a = . PPIN =
PPOUT =

tl=a+b PPIN =
PPOUT =
a = .. PPIN =
t2 =a +b PPOUT =
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Formulating the Problem

* PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors

* PPIN: we want to place at input of this block only if (all of):

— we have a local computation to place, or a placement at the end of this block
which we can move up

— we want to move computation to output of all predecessors where expression
is not already available (don’t insert at input)

— we can gain something by placing it here (PAVIN)
* Forward or Backward?
— BOTH!

* Problem is bidirectional, but lattice {0, 1} is finite, so

— as long as transfer functions are monotone, it converges.

Computing “Placement Possible”

* PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors
0 i=entry
+ PPOUT[i] =
M PPIN[s]  otherwise

s Esucc(i)
* PPIN: we want to place at start of this block only if (all of):

— we have a local computation to place, or a placement at the end of this block
which we can move up

— we want to move computation to output of all predecessors where expression
is not already available (don’t insert at input)

— we gain something by moving it up (PAVIN heuristic)

0 i=exit
* PPIN[i] = ([ANTLOCIi] U (PPOUTIi] — KILL[i])]
n )(PPOUT[p] U AVOUT[p])  otherwise
p Epreds(i
N PAVIN[i])
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“Placement Possible” Example 1
a = KILL=1 PAVIN =0 PPIN =
AVLOC =0 PAVOUT =0
l ANTLOC=0 AVOUT=0 PPOUT =
tl=a +b KILL=0 PAVIN = 1 PPIN =
AVLOC=1 PAVOUT =1
ANTLOC =1 AVOUT =1 PPOUT =
l KILL=1 PAVIN =1 PPIN =
a
AVLOC =1 PAVOUT =1
t2 =a +b
‘ ANTLOC=0 AVOUT =1 PPOUT =
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“Placement Possible” Example 2

a = KILL=1 PAVIN =0 PPIN =
tl1=a+b AVIOC=1  PAVOUT=1
/ ANTLOC=0 AVOUT =1 PPOUT =
a = KILL=1 PAVIN =0 PPIN =
AVLOC=0 PAVOUT =0
ANTLOC=0 AVOUT=0 PPOUT =
2 =a + b KILL=0 PAVIN = 1 PPIN =
AVLOC=1 PAVOUT =1
ANTLOC=1 AVOUT =1 PPOUT =
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“Placement Possible” Correctness

* Convergence of analysis: transfer functions are monotone.
« Safety: Insert only if anticipated.

PPIN[i] C (PPOUTIi] - KILL[i]) U ANTLOCIi]

0 i=exit
pPOUTII] = M PPIN[s) otherwise

s E succfi)
« INSERT € PPOUT C ANTOUT, so insertion is safe.

* Performance: never increase the # of computations on any path
* DELETE = PPIN M ANTLOC
* On every path from an INSERT, there is a DELETE.
* The number of computations on a path does not increase.
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Morel-Renvoise Limitations

* Movement usefulness tied to PAVIN heuristic
— Makes some useless moves, might increase register lifetimes:

a+b

atb

— Doesn’t find some eliminations:

a+b
a+b a+b

« Bidirectional data flow difficult to compute.
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Related Work

* Don’t need heuristic
— Dhamdhere, Drechsler-Stadel, Knoop,et.al.
— use restricted flow graph or allow edge placements.

« Data flow can be separated into unidirectional passes

— Dhamdhere, Knoop, et. al.

* Improvement still tied to accuracy of computational model
— Assumes performance depends only on the number of computations along
any path.
— Ignores resource constraint issues: register allocation, etc.

— Knoop, et.al. give “earliest” and “latest” placement algorithms which begin to
address this.
* Further issues:
— more than one expression at once, strength reduction, redundant
assignments, redundant stores.
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