Partial Redundancy Elimination

* Global code motion optimization
 Remove partially redundant expressions
 Loop invariant code motion
 (Can be extended to do Strength Reduction

* No loop analysis needed
* Bidirectional flow problem

Todd C. Mowry 15-745: Partial Redundancy Elim. 1

Redundancy

e A Common Subexpression is a Redundant Computation

tl = a + b t2 = a + b
t3I=a+ b

* Occurrence of expression E at P is redundant if E is available there:
— Eis evaluated along every path to P, with no operands redefined since.
 Redundant expression can be eliminated

15-745: Partial Redundancy Elim. 2 Todd C. Mowry

-
Partial Redundancy

e Partially Redundant Computation

tl

a+b

—

t3I=a+ b

* Occurrence of expression E at P is partially redundant if E is partially available
there:

— Eis evaluated along at least one path to P, with no operands redefined since.

* Partially redundant expression can be eliminated if we can insert computations to
make it fully redundant.

15-745: Partial Redundancy Elim. 3 Todd C. Mowry

Loop Invariants are Partial Redundancies

Loop invariant expression is partially redundant

a = ..

tl

a+b

As before, partially redundant computation can be eliminated if we insert

computations to make it fully redundant.

Remaining copies can be eliminated through copy propagation or more complex
analysis of partially redundant assignments.

Carnegie Mellon -

15-745: Partial Redundancy Elim. Todd C. Mowry

Partial Redundancy Elimination

e The Method:

1. Insert Computations to make partially redundant expression(s) fully
redundant.

2. Eliminate redundant expression(s).

* Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

* For this lecture, we assume one expression of interest, a+b.

— In practice, with some restrictions, can do many expressions in parallel.

15-745: Partial Redundancy Elim. 5 Todd C. Mowry

-
Which Occurrences Might Be Eliminated?

* |n CSE,

— Eis available at P if it is previously evaluated along every path to P, with no
subsequent redefinitions of operands.

— If so, we can eliminate computation at P.

* InPRE,

— Eis partially available at P if it is previously evaluated along at least one path
to P, with no subsequent redefinitions of operands.

— If so, we might be able to eliminate computation at P, if we can insert
computations to make it fully redundant.

* Occurrences of E where E is partially available are candidates for elimination.

15-745: Partial Redundancy Elim. 6 Todd C. Mowry

Finding Partially Available Expressions

* Forward flow problem
— Lattice={0, 1}, meetis union (U), Top =0 (not PAVAIL), entry =0

* PAVOUTIi] = (PAVIN[i] = KILL[i]) U AVLOCIi]

0 i = entry
* PAVINJ[i] =
U PAVOUT[p] otherwise
p € preds(i)

* For a block,
* Expression is locally available (AVLOC) if downwards exposed.
* Expression is killed (KILL) if any assignments to operands.

| | v

a+ b

o
I
I

! ! '

15-745: Partial Redundancy Elim. 7 Todd C. Mowry

Partial Availability Example

* For expression a+b.

a = KILL = 1 PAVIN =
AVLOC = 0 PAVOUT =
tl=a+b KILL = 0 PAVIN =
AVLOC = 1 PAVOUT =
a = KILL = 1 PAVIN =
t2 = a + b AVLOC = 1 PAVOUT =

* Occurrence in loop is partially redundant.

Carnegie Mellon -

15-745: Partial Redundancy Elim. 8 Todd C. Mowry

Where Can We Insert Computations?

e Safety: never introduce a new expression along any path.

tl a+b

\/\

t3I=a+b

— Insertion could introduce exception, change program behavior.
— If we can add a new basic block, can insert safely in most cases.
— Solution: insert expression only where it is anticipated.

* Performance: never increase the # of computations on any path.

— Under simple model, guarantees program won’t get worse.
— Reality: might increase register lifetimes, add copies, lose.

15-745: Partial Redundancy Elim. 9 Todd C. Mowry

Finding Anticipated Expressions

* Backward flow problem
— Lattice={0, 1}, meetis intersection (N), top =1 (ANT), exit=0

* ANTINJ[i] = ANTLOC[i] U (ANTOUTIi] - KILL[i])
0 i = exit
- ANTOUTIi] =
M ANTIN[s] otherwise

s Esucc(i)
* For a block,
* Expression locally anticipated (ANTLOC) if upwards exposed.

| | v

a = .. . =a+Db
+ b

I
)
)

I

15-745: Partial Redundancy Elim. 10 Todd C. Mowry

Anticipation Example

* For expression a+b.

a KILL=1 ANTIN =

ANTLOC=0 ANTOUT =

tl =a +b KILL = 0 ANTIN =
ANTLOC=1 ANTOUT =

KILL = 1 ANTIN =
a+b ANTLOC=0 ANTOUT =

a
t2

* Expression is anticipated at end of first block.
 Computation may be safely inserted there.

Carnegie Mellon -

15-745: Partial Redundancy Elim. 11 Todd C. Mowry

Where Do We Want to Insert Computations?

e Morel-Renvoise and variants: “Placement Possible”

— Dataflow analysis shows where to insert:
* PPIN = “Placement possible at entry of block or before.”
* PPOUT = “Placement possible at exit of block or before.”

— Insert at earliest place where PP = 1.

— Only place at end of blocks,

* PPIN really means “Placement possible or not necessary in each predecessor
block.”

— Don’t need to insert where expression is already available.

* INSERTIi] = PPOUTIi] N (=PPIN[i] U KILL[i]) N =AVOUTIi]

— Remove (upwards-exposed) computations where PPIN=1.

e DELETE[i] = PPIN[i] N ANTLOC]i]

15-745: Partial Redundancy Elim. 12 Todd C. Mowry

Where Do We Want to Insert? Example

a = .. PPIN =
PPOUT =

PPOUT =
a = _ PPIN =
t2 = a + b PPOUT =

Carnegie Mellon -

15-745: Partial Redundancy Elim. 13 Todd C. Mowry

Formulating the Problem

PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors

* PPIN: we want to place at input of this block only if (all of):

— we have a local computation to place, or a placement at the end of this block
which we can move up

— we want to move computation to output of all predecessors where expression
is not already available (don’t insert at input)

— we can gain something by placing it here (PAVIN)
* Forward or Backward?
— BOTH!

* Problem is bidirectional, but lattice {0, 1} is finite, so

— as long as transfer functions are monotone, it converges.

15-745: Partial Redundancy Elim. 14 Todd C. Mowry

Computing “Placement Possible”

PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors

0 i = entry

- PPOUTIi] =
M PPIN[s] otherwise

s Esucc(i)
* PPIN: we want to place at start of this block only if (all of):

— we have a local computation to place, or a placement at the end of this block
which we can move up

— we want to move computation to output of all predecessors where expression
is not already available (don’t insert at input)

— we gain something by moving it up (PAVIN heuristic)

0 i = exit
« PPINI[i] = ([ANTLOC[i] U (PPOUTIi] — KILL[i])]
N n (PPOUT[p] U AVOUT[p]) otherwise
p Epreds(i)
N PAVIN[i])

15-745: Partial Redundancy Elim. 15 Todd C. Mowry

“Placement Possible” Example 1

2 = KILL=1 PAVIN = 0 PPIN =
AVLOC = 0 PAVOUT =0
l ANTLOC=0 AVOUT=0 PPOUT =
t1 = a + b KILL=0 PAVIN = 1 PPIN =
AVLOC = 1 PAVOUT = 1
, ANTLOC=1 AVOUT=1 PPOUT =
l KILL =1 PAVIN = 1 PPIN =
iz z .+ b AVLOC = 1 PAVOUT = 1
1 ANTLOC=0 AVOUT=1 PPOUT =

Carnegie Mellon -

15-745: Partial Redundancy Elim. Todd C. Mowry

“Placement Possible” Example 2

a = KILL=1 PAVIN =0 PPIN =
tl =a +b AVLOC=1 PAVOUT =1
/ ANTLOC=0 AVOUT=1 PPOUT =
a = KILL=1 PAVIN =0 PPIN =
AVLOC =0 PAVOUT =0
ANTLOC=0 AVOUT=0 PPOUT =
t2 = a +b KILL=0 PAVIN = 1 PPIN =
AVLOC =1 PAVOUT =1
ANTLOC=1 AVOUT=1 PPOUT =

Carnegie Mellon -

15-745: Partial Redundancy Elim. Todd C. Mowry

“Placement Possible” Correctness

e Convergence of analysis: transfer functions are monotone.
e Safety: Insert only if anticipated.

PPIN[i] € (PPOUTIi] — KILL[i]) U ANTLOCIi]

0 I = exit
PPOUTI] = M PPIN[s] otherwise

s Esucc(i)

« INSERT € PPOUT € ANTOUT, so insertion is safe.

* Performance: never increase the # of computations on any path

* DELETE = PPIN M ANTLOC
* On every path from an INSERT, there is a DELETE.
* The number of computations on a path does not increase.

15-745: Partial Redundancy Elim. 18

Todd C. Mowry

Morel-Renvoise Limitations

 Movement usefulness tied to PAVIN heuristic
— Makes some useless moves, might increase register lifetimes:

a+b
 T—be—

— = —
v

a+b

— Doesn’t find some eliminations:

a+b

L T—e—

a+b a+b

* Bidirectional data flow difficult to compute.

15-745: Partial Redundancy Elim. 19 Todd C. Mowry

Related Work

* Don’t need heuristic
— Dhamdhere, Drechsler-Stadel, Knoop,et.al.

— use restricted flow graph or allow edge placements.

Data flow can be separated into unidirectional passes

— Dhamdhere, Knoop, et. al.

Improvement still tied to accuracy of computational model

Assumes performance depends only on the number of computations along
any path.

— lgnores resource constraint issues: register allocation, etc.

Knoop, et.al. give “earliest” and “latest” placement algorithms which begin to
address this.

* Further issues:

— more than one expression at once, strength reduction, redundant
assignments, redundant stores.

15-745: Partial Redundancy Elim. 20 Todd C. Mowry

References

1. E. Morel and C. Renvoise, “Global Optimization by Suppression of Partial Redundancies,” CACM 22 (2),
Feb. 1979, pp. 96-103.

Knoop, Rithing, Steffen, “Lazy Code Motion,” PLDI 92.

3. F.Chow, A Portable Machine-Independent Global Optimizer--Design and Measurements. Stanford CSL
memo 83-254.

Dhamdhere, Rosen, Zadeck, “How to Analyze Large Programs Efficiently and Informatively,” PLDI 92.

5. K. Drechsler, M. Stadel, “A Solution to a Problem with Morel and Renvoise’s ‘Global Optimization by
Suppression of Partial Redundancies,”” ACM TOPLAS 10 (4), Oct. 1988, pp. 635-640.

6. D.Dhamdhere, “Practical Adaptation of the Global Optimization Algorithm of Morel and Renvoise,” ACM
TOPLAS 13 (2), April 1991.

7. D.Dhamdhere, “A Fast Algorithm for Code Movement Optimisation,” SIGPLAN Not. 23 (10), 1988, pp.
172-180.

8. S.Joshi, D. Dhamdhere, “A composite hoisting --- strength reduction transformation for global program
optimisation,” International Journal of Computer Mathematics, 11 (1982), pp. 21-41, 111-126.

15-745: Partial Redundancy Elim. 21 Todd C. Mowry

