Induction Variables and

Strength Reduction

. Overview of optimization

II. Algorithm to find induction variables

Todd C. Mowry 15-745: Strength Reduction 1

Example
FOR i = 0 to 100
A[i] = 0;
i=0
L2: IF i>=100 GOTO L1
tl =4 * i
t2 = &A + t1
*t2 = 0
i= i+l
GOTO L2

Ll:

15-745: Strength Reduction 2 Todd C. Mowry

|
Definitions

* Abasic induction variable is
— avariable X whose only definitions within the loop are assignments of the
form:
X=X+c or X=X-¢,
where cis either a constant or a loop-invariant variable.

¢ Aninduction variable is
¢ abasic induction variable, or
* avariable defined once within the loop, whose value is a linear function of some

basic induction variable at the time of the definition:
A=c,*B+c,

¢ The FAMILY of a basic induction variable B is
* the set of induction variables A such that each time A is assigned in the loop, the
value of Ais a linear function of B.

Carnegie Mellon I

15-745: Strength Reduction 3 Todd C. Mowry

|
Optimizations

1. Strength reduction:
— Adis an induction variable in family of basic induction variable B (A = c, *B + c,)

* Create new variable: A
* Initialization in preheader: A=c, *B+c,;
¢ Track value of B: add after B=B+x: A’=A’+x*c,;
* Replace assignment to A: A=A’
Carnegie Mellon [
15-745: Strength Reduction 4 Todd C. Mowry

Optimizations (continued)

2. Optimizing non-basic induction variables
— copy propagation
— dead code elimination
3. Optimizing basic induction variables
— Eliminate basic induction variables used only for
* calculating other induction variables and loop tests
— Algorithm:
« Select an induction variable A in the family of B, preferably with simple constants
(A=c,*B+g,).
* Replace a comparison such as
if B > X goto L1
with
if (A’ > ¢, *X + c,) goto L1 (assumingc, is positive)
« if Bis live at any exit from the loop, recompute it from A’
— After the exit, B=(A"-¢c,) / ¢,

15-745: Strength Reduction 5 Todd C. Mowry

1. Basic Induction Variables

* ABASIC induction variable in a loop L
— avariable X whose only definitions within L are assignments of the form:
X = X+c or X = X-c, where c is either a constant or a loop-invariant variable.

« Algorithm: can be detected by scanning L

¢ Example:
k=0;
for (i = 0; i < n; i++) {
k =%k + 3;
. =m;
if (x <y)
k =k + 4;
if (a < b)
m=2 * k;
k=k-2;
. =m;

Each iteration may execute a different number of increments/decrements!!

15-745: Strength Reduction 6 Todd C. Mowry

|
Strength Reduction Algorithm

* Keyidea:
— For each induction variable A, (A = ¢, *B+c, at time of definition)
* variable A’ holds expression ¢, *B+c, at all times
 replace definition of A with A=A’ only when executed

* Result:
— Program is correct
— Definition of A does not need to refer to B

Carnegie Mellon I

15-745: Strength Reduction 7 Todd C. Mowry

Finding Induction Variable Families

* Let B be a basic induction variable
— Find all induction variables A in family of B:
* A=c *B+g,
(where B refers to the value of B at time of definition)
¢ Conditions:
— If A has a single assignment in the loop L, and assignment is one of:

(assuming A is real)

I+ 4+ N * *
wowoaowao

LR
[
NwWowwow

— OR, ... (next page)

Carnegie Mellon [

15-745: Strength Reduction 8 Todd C. Mowry

Finding Induction Variable Families (continued)

— Let D be an induction variable in the family of B (D =¢,;* B +¢,)

« If A has a single assignment in the loop L, and assignment is one of:

(assuming A is real)

]
+ + N

L
[
nNnooUUOUO
Unooaoova

* No definition of D outside L reaches the assignment to A

* Between the lone point of assignment to D in L and the assignment to A,
there are no definitions of B

15-745: Strength Reduction 9 Todd C. Mowry

|
Summary

* Precise definitions of induction variables
* Systematic identification of induction variables
e Strength reduction

¢ Cleanup:
— eliminating basic induction variables
* used in other induction variable calculations
« replacement of loop tests
— eliminating other induction variables
« standard optimizations

15-745: Strength Reduction 10 Todd C. Mowry

