Lecture 15

Register Allocation & Spilling

I. Introduction

Il. Abstraction and the Problem
Ill. Algorithm

IV. Spilling

Reading: ALSU 8.8.4
T carnegie Metton [

Todd C. Mowry 15-745: Register Allocation 1

|
|. Motivation

* Problem
— Allocation of variables (pseudo-registers) to hardware registers in a procedure

* Avery important optimization!
— Directly reduces running time
* (memory access = register access)
— Useful for other optimizations
* e.g. CSE assumes old values are kept in registers.

Carnegie Mellon [JI

15-745: Register Allocation 2 Todd C. Mowry

Goals

¢ Find an allocation for all pseudo-registers, if possible.

« If there are not enough registers in the machine, choose registers to spill to
memory

Carnegie Mellon -

15-745: Register Allocation 3 Todd C. Mowry

|
Example

A= ..
IF A goto L1

1
L

Carnegie Mellon -

15-745: Register Allocation 4 Todd C. Mowry

Il. An Abstraction for Allocation & Assignment

* Intuitively
— Two pseudo-registers interfere if at some point in the program they cannot
both occupy the same register.

* Interference graph: an undirected graph, where
— nodes = pseudo-registers

— there is an edge between two nodes if their corresponding
pseudo-registers interfere

* What is not represented
— Extent of the interference between uses of different variables
— Where in the program is the interference

Carnegie Mellon [

15-745: Register Allocation 5 Todd C. Mowry

Register Allocation and Coloring

* Agraphis n-colorable if:
— every node in the graph can be colored with one of the n colors such that two
adjacent nodes do not have the same color.

* Assigning n register (without spilling) = Coloring with n colors
— assign a node to a register (color) such that no two adjacent nodes are
assigned same registers(colors)

* Isspilling necessary? = Is the graph n-colorable?

* To determine if a graph is n-colorable is NP-complete, for n>2
— Too expensive
— Heuristics

Carnegie Mellon [JI

15-745: Register Allocation 6 Todd C. Mowry

|
IIl. Algorithm

Step 1. Build an interference graph
a. refining notion of a node
b. finding the edges

Step 2. Coloring
— use heuristics to try to find an n-coloring
¢ Success:
— colorable and we have an assignment

* Failure:
— graph not colorable, or
— graph is colorable, but it is too expensive to color

Carnegie Mellon [

15-745: Register Allocation 7 Todd C. Mowry

Step 1a. Nodes in an Interference Graph

A= ..
IF A goto L1

1
>

Carnegie Mellon [JI

15-745: Register Allocation 8 Todd C. Mowry

|
Live Ranges and Merged Live Ranges

* Motivation: to create an interference graph that is easier to color
— Eliminate interference in a variable’s “dead” zones.
— Increase flexibility in allocation:
* can allocate same variable to different registers

* Alive range consists of a definition and all the points in a program (e.g. end of an

instruction) in which that definition is live.
— How to compute a live range?

* Two overlapping live ranges for the same variable must be merged

Carnegie Mellon [
15-745: Register Allocation 9 Todd C. Mowry

Example (Revisited)

Live Variables

Reaching Definitions A= (A) {i\ (i\
= (A
IF A goto L1 iAg f Ag
) A P -
(AB} (A,B) o LL: i)
C=.. ()
8 o e N
o 0= ®)|) (a0
{D} {A,,B,,C;,D,,D5}
{AD} {A,B,C,D,D E
A0} (A,B,C,D.0) Y,
{D} {A,,B4,C;,D1,D,} re_t D
Carnegie Mellon [JI
15-745: Register Allocation 10 Todd C. Mowry

Merging Live Ranges

* Merging definitions into equivalence classes
— Start by putting each definition in a different equivalence class
— For each point in a program:

« if (i) variable is live, and (ii) there are multiple reaching definitions for the variable,
then:

— merge the equivalence classes of all such definitions into one equivalence
class

* From now on, refer to merged live ranges simply as live ranges
— merged live ranges are also known as “webs”

Carnegie Mellon [

15-745: Register Allocation 11 Todd C. Mowry

|
Step 1b. Edges of Interference Graph

* Intuitively:
— Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program.
— Algorithm:
* At each point in the program:
— enter an edge for every pair of live ranges at that point.

* An optimized definition & algorithm for edges:
— Algorithm:
« check for interference only at the start of each live range
— Faster
— Better quality

Carnegie Mellon [JI

15-745: Register Allocation 12 Todd C. Mowry

Example 2

IF Q goto L1

IF Q L2

Carnegie Mellon [

15-745: Register Allocation 13 Todd C. Mowry

Step 2. Coloring

* Reminder: coloring for n > 2 is NP-complete

* Observations:
— anode with degree < n=>
* can always color it successfully, given its neighbors’ colors

— anode with degree = n=>

— anode with degree > n=>

Carnegie Mellon [JI

15-745: Register Allocation 14 Todd C. Mowry

Coloring Algorithm

e Algorithm:
— Iterate until stuck or done
¢ Pick any node with degree <n
* Remove the node and its edges from the graph
— If done (no nodes left)
 reverse process and add colors
e Example (n=3):

=]
E?

* Note: degree of a node may drop in iteration
* Avoids making arbitrary decisions that make coloring fail

Carnegie Mellon -

15-745: Register Allocation 15 Todd C. Mowry

What Does Coloring Accomplish?

* Done:

— colorable, also obtained an assignment
e Stuck:
— colorable or not?

=]
E?

Carnegie Mellon -

15-745: Register Allocation 16 Todd C. Mowry

Extending Coloring: Design Principles

* A pseudo-register is
— Colored successfully: allocated a hardware register
— Not colored: left in memory
* Objective function
— Cost of an uncolored node:
* proportional to number of uses/definitions (dynamically)
« estimate by its loop nesting
— Objective: minimize sum of cost of uncolored nodes
* Heuristics
— Benefit of spilling a pseudo-register:
« increases colorability of pseudo-registers it interferes with
* can approximate by its degree in interference graph
— Greedy heuristic

* spill the pseudo-register with lowest cost-to-benefit ratio, whenever spilling is
necessary

Carnegie Mellon [

15-745: Register Spilling 17 Todd C. Mowry

|
Spilling to Memory

* CISC architectures
— can operate on data in memory directly
— memory operations are slower than register operations

* RISC architectures
— machine instructions can only apply to registers
— Use
« must first load data from memory to a register before use
— Definition
* must first compute RHS in a register
* store to memory afterwards

Even if spilled to memory, needs a register at time of use/definition

Carnegie Mellon [JI

15-745: Register Spilling 18 Todd C. Mowry

|
Review: Coloring Algorithm (Without Spilling)

« Attempt to Color Graph

Build interference graph
Iterate until there are no nodes left
If there exists a node v with less than n neighbor
place v on stack to register allocate
else
return (coloring heuristics fail)
remove v and its edges from graph

* Assign registers

While stack is not empty
Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

Carnegie Mellon [

15-745: Register Spilling 19 Todd C. Mowry

|
Chaitin: Coloring and Spilling

* Identify spilling
Build interference graph
Iterate until there are no nodes left
If there exists a node v with less than n neighbor
place v on stack to register allocate
else
v = node with highest degree-to-cost ratio
mark v as spilled
remove v and its edges from graph

* Spilling may require use of registers; change interference graph

While there is spilling
rebuild interference graph and perform step above
* Assign registers
While stack is not empty
Remove v from stack

Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

Carnegie Mellon [JI

15-745: Register Spilling 20 Todd C. Mowry

Spilling
¢ What should we spill?

— Something that will eliminate a lot of interference edges
— Something that is used infrequently
— Maybe something that is live across a lot of calls?

* One Heuristic:

— spill cheapest live range (aka “web”)
— Cost = [(# defs & uses)*10/oop-nest-depth] /degree

I — carnegie Meon. [
15-745: Register Spilling Todd C. Mowry

Quality of Chaitin’s Algorithm

e Giving up too quickly

e An optimization: “Prioritize the coloring”

— Still eliminate a node and its edges from graph

— Do not commit to “spilling” just yet

— Try to color again in assignment phase.

- carnegie Melion [
15-745: Register Spilling 2

Todd C. Mowry

Splitting Live Ranges

Recall: Split pseudo-registers into live ranges to create an interference graph that
is easier to color

Eliminate interference in a variable’s “dead” zones.
— Increase flexibility in allocation:

+ can allocate same variable to different registers

w
o

Carnegie Mellon -
15-745: Register Spilling

Todd C. Mowry

15-745: Register Spilling

Insight

* Split a live range into smaller regions (by paying a small cost) to create an
interference graph that is easier to color
— Eliminate interference in a variable’s “nearly dead” zones.
* Cost: Memory loads and stores
— Load and store at boundaries of regions with no activity
* # active live ranges at a program point can be > # registers

— Can allocate same variable to different registers
* Cost: Register operations

— aregister copy between regions of different assignments
* # active live ranges cannot be > # registers

24 Todd C. Mowry

Examples

Example 1:

FOR i = 0 TO 10
FOR j = 0 TO 10000
A=A+
(does not use B)
FOR j = 0 TO 10000
B =B +
(does not use A)

Example 2:

Carnegie Mellon [

15-745: Register Spilling Todd C. Mowry

Live Range Splitting

* When do we apply live range splitting?
* Which live range to split?
* Where should the live range be split?
* How to apply live-range splitting with coloring?
— Advantage of coloring:
+ defers arbitrary assignment decisions until later

— When coloring fails to proceed, may not need to split live range
« degree of a node >= n does not mean that the graph definitely is not colorable

— Interference graph does not capture positions of a live range

Carnegie Mellon [JI

15-745: Register Spilling 26 Todd C. Mowry

One Algorithm

* Observation: spilling is absolutely necessary if
— number of live ranges active at a program point > n

* Apply live-range splitting before coloring
— Identify a point where number of live ranges > n
— For each live range active around that point:
+ find the outermost “block construct” that does not access the variable
— Choose a live range with the largest inactive region
— Split the inactive region from the live range

Carnegie Mellon -

15-745: Register Spilling 27 Todd C. Mowry

Summary

* Problems:
— Given n registers in a machine, is spilling avoided?
— Find an assignment for all pseudo-registers, whenever possible.

* Solution:
— Abstraction: an interference graph
* nodes: live ranges
« edges: presence of live range at time of definition
— Register Allocation and Assignment problems
« equivalent to n-colorability of interference graph
= NP-complete
— Heuristics to find an assignment for n colors
¢ successful: colorable, and finds assignment
* not successful: colorability unknown & no assignment

Carnegie Mellon -

15-745: Register Allocation 28 Todd C. Mowry

