
CS 745, Spring 2014

Homework Assignment 2

Assigned: Thursday, January 30
Due: Thursday, February 13, 9:00AM

Introduction

In class, we discussed many interesting data flow analyses like Liveness, Reaching Definitions,
and Available Expressions. Although these analyses are different in certain ways, for exam-
ple they compute different program properties and analyze the program in different directions
(forwards, backwards), they share some common properties such as iterative algorithms, trans-
fer functions, and meet operators. These commonalities make it worthwhile to write a generic
framework that can be parameterized appropriately for solving a specific data flow analysis.
In this assignment, you and your partner will implement such an iterative data flow analysis
framework in LLVM, and use it to implement a forward data flow analysis (Reaching Definitions)
and a backward data flow analysis (Liveness). Although Liveness and Reaching Definitions im-
plementations are available in some form in LLVM, they are not of the iterative flavor, and
the objective of this assignment is to create a generic framework for solving iterative bit-vector
dataflow analysis problems, and use it to implement Liveness and Reaching Definitions analysis.

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members.

Logistics

Any clarifications and revisions to the assignment will be posted on Piazza.

In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15745-s14/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst2.

1 Iterative Data Flow Analysis Framework

A well written iterative data flow analysis framework significantly reduces the burden of imple-
menting new data flow passes, the developer only writes pass specific details such as the meet
operator, transfer function, analysis direction, etc. In particular, the framework should solve
any unidirectional data flow analysis as long as the analysis supplies the following:

1. Domain, including the semi-lattice

2. Direction (forwards or backwards)
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3. Transfer function

4. Meet operation

5. Boundary condition

6. Initial interior points (Top)

To simplify the design process, the domain of values should be represented as bit vectors so that
the semi-lattice and set operations (union, intersection) are easy to implement. Careful thought
should be given to how the analysis parameters are represented. For example, direction could
reasonably be represented as a boolean, while function pointers may seem more appropriate for
representing transfer functions.

It will be worth your while to do a good job on this assignment because you will
be reusing this framework in Assignment 3.

2 Data Flow Analyses

You will now use your iterative data flow analysis framework to implement Liveness and Reaching
Definitions. As explained below in more details, each analysis should perform computation at
program points. As defined in class, program points are assumed to lie between instructions (not
in the middle of instructions).

Liveness On convergence, your Liveness pass should report all variables that are “live” at
each program point. A useful debugging strategy might be to use results of the LLVM Liveness
pass as a reference. Please call this pass “live”

Reaching Definitions On convergence, your Reaching Definitions pass should report all the
definition sites that “reach” each program point. Please call this pass “reach”
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int sum (int a, int b)!
{!
 int i;!
 int res = 1;!

 for (i = a; i < b; i++) !
 {!
    res *= i;!
 }!
 return res;!
}!

(a)!

define i32 @sum(i32 %a, i32 %b) nounwind readnone ssp {!
entry:!
  %0 = icmp slt i32 %a, %b!
  br i1 %0, label %bb.nph, label %bb2!

bb.nph: ; preds = %entry!
  %tmp = sub i32 %b, %a!
  br label %bb!

bb:     ; preds = %bb, %bb.nph!
  %indvar = phi i32 [ 0, %bb.nph ], [ %indvar.next, %bb ]!
  %res.05 = phi i32 [ 1, %bb.nph ], [ %1, %bb ]!
  %i.04 = add i32 %indvar, %a!
  %1 = mul nsw i32 %res.05, %i.04!
  %indvar.next = add i32 %indvar, 1!
  %exitcond = icmp eq i32 %indvar.next, %tmp!
  br i1 %exitcond, label %bb2, label %bb!

bb2:    ; preds = %bb, %entry!
  %res.0.lcssa = phi i32 [ 1, %entry ], [ %1, %bb ]!
  ret i32 %res.0.lcssa!

(b)!

Figure 1: (a) Simple loop code, and (b) corresponding optimized (-O) LLVM bytecode.

2.1 Implementation Issues1

The Single Static Assignment (SSA) form of LLVM intermediate representation presents some
unique challenges when performing iterative data flow analysis.

1. Values in LLVM are represented by the Value class. In SSA every value is guaranteed
to have only a single definition point, so instead of representing values as some distinct
variable or pseudo register class, LLVM represents values defined by instructions by the
defining instruction. That is, Instruction is a subclass of Value. There are other subclasses
of Value, such as basic blocks, constants, and function arguments. For this assignment,
we will only track the liveness of instruction-defined values and function arguments. That
is, when determining what values are used by an instruction, you will use code like this:

User::op_iterator OI, OE;

for (OI = insn->op_begin(), OE = insn->op_end(); OI != OE; ++OI)

{

Value *val = *OI;

if (isa<Instruction>(val) || isa<Argument>(val)) {

// val is used by insn

}

}

2. φ instructions are pseudo instructions that are used in the SSA representation and need
to be handled specially by both Liveness and Reaching Definitions. Although SSA will

1Based on earlier editions of the class. Credits to Seth Goldtein and David Koes.
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define i32 @sum(i32 %a, i32 %b) nounwind readnone ssp {
entry:

{%a,%b}
%0 = icmp slt i32 %a, %b

{%a,%b,%0}
br i1 %0, label %bb.nph, label %bb2
bb.nph: ; preds = %entry

{%a,%b}
%tmp = sub i32 %b, %a

{%a,%tmp}
br label %bb
bb: ; preds = %bb, %bb.nph
%indvar = phi i32 [ 0, %bb.nph ], [ %indvar.next, %bb ]
%res.05 = phi i32 [ 1, %bb.nph ], [ %1, %bb ]

{%a,%tmp,%indvar,%res.05}
%i.04 = add i32 %indvar, %a

{%a,%tmp,%indvar,%res.05,%i.04}
%1 = mul nsw i32 %res.05, %i.04

{%a,%tmp,%indvar,%1}
%indvar.next = add i32 %indvar, 1

{%a,%tmp,%1,%indvar.next}
%exitcond = icmp eq i32 %indvar.next, %tmp

{%a,%tmp,%1,%indvar.next,%exitcond}
br i1 %exitcond, label %bb2, label %bb
bb2: ; preds = %bb, %entry
%res.0.lcssa = phi i32 [ 1, %entry ], [ %1, %bb ]

{%res.0.lcssa}
ret i32 %res.0.lcssa

{}
}

Table 1: Output of Liveness on the bytecode in Figure 1(b).

be covered in more details in class, a brief description is appropriate here, especially with
regards to φ instructions. Since SSA requires that values have a unique definition at any
program program point (P), SSA introduces φ instructions at the beginning of the basic
block containing P, to “combine” all the different definitions, so that all the uses in the
block (including at P), see only the definition by the phi instruction. Consider the uses of
φ(phi) instructions in Figure 1(b) as illustrations. You should carefully consider how your
analysis passes are affected by φ instructions. For example, your passes should not output
results for the program point preceding a phi instruction since they are pseudo instructions
which will not appear in the executable. To guide you in formatting the output of your
passes, the expected output of running Liveness analysis on the bytecode from Figure 1(b)
is shown in Figure 1.

3. The fact that you will be working on code in SSA form means that computed values are
never destroyed. This will have ramifications for how your passes are implemented. Think
carefully about what this means to your implementation.
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3 Questions

3.1 Lazy Code Motion

Suppose you were processing the program illustrated by the pseudo-code in Listing 1. Assume
that x, y, and z are initialized prior to the code reaching the first statement in the code, and are
not constants.

1. Build the CFG for this code, indicating which instructions from the original code will be
in each basic block. You may indicate the instructions using the line number for that line
of code in parentheses (for example (1) for “x=x+3” on the first line below). Also indicate
on which expressions are anticipated on each edge, based upon the agorithm described in
class.

2. Show the CFG after the Early Placement pass. You may apply constant folding at this
time.

3. Show the CFG after the Lazy Code Motion and Cleanup passes.

All CFGs may be drawn either via a computer or by hand, but they must be legible in the
writeup.

1 x=x+3;
2 i f (y>5) {
3 z=z+x ;
4 x=4;
5 } e l s e {
6 y=y−5;
7 z=z+x ;
8 }
9 return z ;

Listing 1: Source code for question 3.1
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3.2 LICM: Loop Invariant Code Motion

For the following code, clearly (i) list the loop invariant instructions, and (ii) clearly indicate
why each may or may not be moved to the pre-header by a loop invariant code motion pass.

entry

y = 0
z = 4
a = 9

z = z + 1
y = 5
q = 7
(z < 50)?

a = a - 1
h = 3
x = 1

a = a + 2
h = 4
x = 1
(z < 100)?

m = y + 7
n = h + 2
y = 7
r = q + 5

S1:
S2:
S3:

print (a, h, m, n, q, x, y, z)

exit

S4:
S5:
S6:

S7:
S8:
S9:

S10:
S11:
S12:
S13:
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4 Hand In

Electronic submission:

• The source code for your framework and passes, the associated Makefiles, your test
cases, and a README describing how to build and run them. Do this by creating a tar
file with the last name of at least one of your group members in the filename, and
copying this tar file into the directory

ASSTDIR/handin

Include as comments near the beginning of your source files the identities of all
members of your group. Also remember to do a good job of commenting your code.

Hard-copy submission:

1. A report that briefly describes the design and implementation of your framework and
passes, and how you tested it. In particular, describe the interface of your framework
clearly, so that someone else (e.g., the grader) could write a pass that will work with
it.

2. A listing of your source code.

3. Your answers to the questions in part 3.
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