15-745, Spring 2014
Homework Assignment 1

Assigned: Thursday, January 16
Due: Thursday, January 30, 9:00AM

Welcome to the Spring 2014 edition of Optimizing Compilers (15-745). We will be using the
Low Level Virtual Machine (LLVM) Compiler infrastructure from University of Illinois Urbana-
Champaign (UIUC) for our programming assignments. While LLVM is currently supported on
a number of hardware platforms, we expect the assignments to be completed on x86 machines,
since that is where they will be graded. We strongly recommended that assignments be done in
the Linux VM that we provide.

The objective of this first assignment is to introduce you to LLVM and some ways that it can
be used to make your programs run faster. In particular, you will use LLVM to analyze code to
output interesting properties about your program (Section [3|) and to perform local optimizations

(Section [4)).

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members.

Logistics

All clarifications (if any) to this assignment will be posted on the class discussion board on
Piazza. Any revisions will be uploaded to the “assignments” page on the class web page.

In the following, HOMEDIR refers to the directory:
/afs/cs.cmu.edu/academic/class/15745-s14/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst1.

1 Install VirtualBox and the 15-745 System Image

To keep you from having to build LLVM yourself and to ensure that all assignments are graded
in the same environment, we are distributing a system image for VirtualBox based on Ubuntu
12.04.3 LTS (Precise Pangolin, a Facilities-supported operating system). You must ensure that
all of your code works in this image, but you are of course not required to do all of your
development with it.

The VirtualBox software is available on several platforms from http://www.virtualbox.org.
We will use version 4.3.6. You may need to enable your machine’s virtualization extensions
in your BIOS setup (on some office machines, reboot, press F12 to get the boot menu, choose
System Setup, then Virtualization Support, then make sure that the box is checked).

Once you have VirtualBox installed, you can retrieve the virtual machine image from

http://piazza.com
http://www.virtualbox.org

Command | Options Meaning
clang Compile high-level source code, such as C
-0 (the letter) Set level of optimization performed by clang
(to the default)
-00 (the letter, followed by zero) | Direct clang not to perform any optimization
—emit-1lvm Output an LLVM bytecode object
-c Output object code, do not fully compile
1llvm-dis Generate disassembly of LLVM bytecode
opt Run LLVM passes
-load Load the pass found in the corresponding file
(file path must be specified)
-{passname} Load the pass with this name
-mem2reg Load the mem2reg pass, which simplifies LLVM bytecode
-0 Specify the output filename

Table 1: A simplified summary of some of the LLVM commands you will use in this assignment.

/afs/cs.cmu.edu/academic/class/15745-s14/www/vm-images/15-745-s14.ova

There is a checksum file in the same directory, 15-745-s14.ova.shal, that you may use
(shalsum -c 15-745-s14.ova.shal) to verify that the image transferred correctly.

The machine name is 15-745-s14; you may log in with username user and password user.
LLVM binaries are in /home/user/11vm/11lvm-3.4-install (or LLVM_ROOT) and source files are
in /home/user/11vm/11vm-3.4-src. LLVM_ROOT/bin is also added to the PATH.

We built LLVM 3.4 in the following way:

mkdir ~/1lvm/1lvm-3.4-build ; cd ~/1lvm/1lvm-3.4-build
../11vm-3.4-src/configure --prefix=/home/user/1lvm/11lvm-3.4-install
make -j 4

make install

Moving files between the VM and your host machine is easy using VirtualBox. If you set up a
shared directory in the VirtualBox GUI under Settings, Shared Folders (pointing somewhere on
your local filesystem). You can mount it in the VM by using the auto-mount option when you
set up the shared folder. You can then find the shared folder at

/media/sf_foldername

where foldername is the name of the shared folder.

Look through the documentation at http://1lvm.org/docs. The LLVM Programmer’s Man-
ual (http://1lvm.org/docs/ProgrammersManual.html) and Writing an LLVM Pass Tutorial
(http://11lvm.org/docs/WritingAnLLVMPass.html) are particularly useful.

2 Create a Pass

Create a directory named FunctionInfo and copy FunctionInfo.cpp (provided with the assign-
ment) into the new directory. FunctionInfo.cpp contains a dummy LLVM pass for analyzing

http://llvm.org/docs
http://llvm.org/docs/ProgrammersManual.html
http://llvm.org/docs/WritingAnLLVMPass.html

the functions in a program. Currently it prints out “15-745 Function Information Pass”. In the
next section, you will extend FunctionInfo.cpp to print out more interesting information. For
now, we will use the dummy LLVM pass to demonstrate how to build and run LLVM passes
on programs. First, use the Makefile we have provided or create a Makefile to build the
FunctionInfo pass as follows (these instructions assume that your passes are the only .cpp files
in the directory. Make sure that there are tabs on lines 6 and 8 below):

all: FunctionInfo.so
CXXFLAGS = -rdynamic $(shell llvm-config --cxxflags all) -g -00

%.so: %h.o

(CXX) -dylib -flat_namespace -shared $~ -o $@
clean:

rm -f *.0 *7 *.so

Before moving on, make sure you can make this dummy pass.

Next, copy the loop.c source code (shown in Figure [fa)) from ASST-
DIR/FunctionInfo/loop.c into your local FunctionInfo directory. Compile it to an
optimized LLVM bytecode object (Loop.bc) as follows:

clang -0 -emit-11lvm -c loop.c

(clang is the LLVM project’s frontend for the C language family.)

Inspect the loop.bc generated bytecode using 11vm-dis as follows:
1lvm-dis loop.bc

This will create a disassembly of the loop.bc bytecode named loop.11 that should look very
similar to Figure [I{b).

Now, try running the dummy FunctionInfo pass on the bytecode. To do this, use the opt
command listed below. Note the use of the command line flag “~function-info” to enable
this pass. (See if you can locate the declaration of this flag in FunctionInfo.cpp). Note that
you must provide the correct path to FunctionInfo.so. You can use ”./” if you are in the same
directory.

opt -load path/to/FunctionInfo.so -function-info loop.bc -o out

If all goes well, “15745 Function Information Pass” should be printed to stderr.

3 Meet The Functions

Program analysis is an important prerequisite to applying correct optimizations: we want to
improve code, not break it. For example, before the optimizer can remove some piece of code to
make a program run faster, it must examine other parts of the program to determine whether

@g = common global i32 0, align 4

; Function Attrs: nounwind
define i32 Qg_incr(i32 %c) #0 {
entry:
%0 = load i32% Q@g, align 4, !tbaa !1
%add = add nsw i32 %0, %c
store i32 Yadd, i32* @g, align 4, !tbaa !'1

int g;
int g_incr (int c) ret i32 ’add
{ }
g +t=¢;
return g; ; Function Attrs: nounwind
} define i32 @loop(i32 %a, 132 %b, 132 %c) #0 {
int loop (int a, int b, int ¢) entry:
{ %cmp2 = icmp sgt i32 b, %a
int i; %0 = load i32x @g, align 4, !tbaa !1

int ret = 0; br il Jcmp2, label Y%for.body.lr.ph, label %for.end

for (i = a; i < b; i++) {

g_incr (c); for.body.lr.ph: ; preds = Jentry
} %1 = sub i32 %b, %a
%2 = mul i32 %1, %c

return ret + g;
} %3 add i32 %0, %2

store i32 %3, i32* Qg, align 4, !tbaa !1
br label %for.end

for.end: ; preds = %for.body.lr.ph, %entry
%.lcssa = phi i32 [%3, Yfor.body.lr.ph 1, [%0, %entry]
ret i32 %.lcssa

}
(a) (b)

Figure 1: (a) A simple loop source code, and (b) its optimized LLVM bytecode.

Name | # Args | # Calls | # Blocks | # Insns
g incr 1 0 1 4
loop 3 0 3 10

Table 2: Expected FunctionInfo output for the optimized bytecode of loop.c

the code is truly redundant. A compiler pass is the standard mechanism for analyzing and
optimizing programs.

You will now extend the dummy FunctionInfo pass from the previous section to learn in-
teresting properties about the functions in a program. Your pass should report the following
information about all functions that are used in a program:

1. Name.
2. Number of arguments (or * if variable).

3. Number of direct call sites in the same LLVM module (i.e. locations where this function
is called, ignoring function pointers).

4. Number of basic blocks.

5. Number of instructions.

To assist you in writing this pass, the expected output of running FunctionInfo on the optimized
bytecode (Figure [I(b)) is shown in Table As you can see, the output in Table 2] is not
interesting, since loop.c is a trivial piece of code. It is therefore recommended that you debug
your pass with more complex source files, as you can imagine grading will be done with complex
programs. Feel free to handin your additional testing source files in a separate directory together
with your source code.

Hint: It may be useful to look at the documentation at the following URL, along with other
documentation:

http://1lvm.org/doxygen/classllvm_1_1Function.html

You can debug your code with gdb as follows:

gdb --args opt -load ./FunctionInfo.so -function-info loop.ll -o out
...

(gdb) b printFunctionInfo

Function "printFunctionInfo" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y
(gdb) r

4 Optimize The Block (New Dragon Book 8.5)

Now that you are an expert writing LLVM passes, it is time to write a pass for making programs
faster. You will implement optimizations on basic blocks as discussed in class. More details on

local optimizations are available in Chapter 8.5 of the new Dragon book. While there are many
types of local optimizations, we will keep things quite simple in this section and focus only on the
algebraic optimizations discussed in Section 8.5.4 of the book. Specifically, you will implement
the following local optimizations:

1. Algebraic identities: e.g, x + 0 = 0 + x = x
2. Constant folding: e.g, 2 * 4 => 8

3. Strength reductions: e.g, 2 * x => (x + x) or (x << 1)

This is a somewhat open-ended question. Please handle at least the above cases, as well as one
more in each category that you come up with, for (scalar) integer types.

4.1 Implementation Details

You should create a new LLVM pass in a file named LocalOpts/LocalOpts.cpp following the
steps in Section [2] Because this will be an optimization pass rather than an analysis pass, there
will be some small differences from the set up of the FunctionInfo pass. Provide an appropriate
makefile at LocalOpts/Makefile. (Note that it is possible to implement more than one pass in
the same directory or file, but we’re trying to keep things clean.) clang may apply these kinds
of local optimizations during the course of regular compilation. To better test your pass, you
should build mostly unoptimized LLVM bytecode from the test cases:

clang -00 -emit-1lvm -c loop.c
opt -mem2reg loop.bc -o loop-m2r.bc

You may assume that all input to your pass will first go through mem2reg as shown above.

We should be able to run your local optimization pass in the following way, from the location
of the shared library:

opt -load ./LocalOpts.so -some-local-opts loop-m2r.bc -o out

In addition to transforming the bytecode, your pass should also print to standard out a summary
of the optimizations it performed. There is no canonical format for this output, but you should
at least try to categorize and count the transformations your pass applies:

Transformations applied:
Algebraic identities: 2
Constant folding: 1
Strength reduction: 3

We will provide toy source files with unrealistic amounts of local optimization opportunities for
you to debug your pass in: ASSTDIR/LocalOpts/test-inputs. In addition to using these test
inputs, we recommend that you test your pass on more realistic programs.

5 Questions

5.1 CFG Basics

For the code provided below (i) find basic blocks (ii) build the CFG (Control Flow Graph). Be
sure to give your basic blocks clear labels (and label the original code to match).

x = 100
y=0
goto L2

Li: y=xx*xy
if (x < 50) goto L2
y=x-3
goto L3
L2: y=x+y
L3: print(y)
if (y < 1000) goto L1
switch (x) { 0 => L6 | 1 => L4 | 101 => L7 | default => L5 }
L4: print("!")
L6: x=x -1

goto L1
L6: return y
L7: goto L7

5.2 Available Expressions, New Dragon Book 9.2.6

An expression x op y is available at a point p if every path from the entry node to p evaluates
x op vy, and after the last such evaluation prior to reaching p, there are no subsequent assignments
to x or y. For the available-expressions data-flow schema we say that a block kills expression
x op y if it assigns (or may assign) x or y and does not subsequently recompute x op y. A block
generates expression x op y if it definitely evaluates x op y and does not subsequently define x
or y.

Based on this definition and the corresponding data flow analysis description(See Table 3| from
New Dragon Book 9.2.7) perform Available Expressions analysis on the code in Figure

Domain Direction Transfer Function Boundary
Sets of expressions Forwards genp U (z — killp) OUT[entry] = @
Meet A Equations Equations Initialize
N OUT[B] = fg(IN[B]) | IN[B] = Appred(B) OUT[P] OUT[Bl =%

Table 3: Available Expressions Analysis.

In the following tables, list the EVAL and KILL sets, then the final IN and OUT sets after AE
is performed. You may ignore expressions inside conditional statements (e.g., (z < ¢)).

Entry

l' 5o o
o x4+
O T o

® Qo
=

-]

b=d
f=b+c
y=i+1
(c>d)?

o X
11l
(opNoy
*
oo

i=i+1
(i< 400)?

v

Exit

Figure 2: Code for Available Expressions Analysis.

BB EVAL KILL
1
2
3
4
5
BB IN ouT
1
2
3
4
5

5.3 New Dataflow Analysis: Faint Analysis

You have been hired to help develop a software analysis package that will detect faint expressions,
which are useful to perform Dead Code Elimination (DCE). The idea behind DCE is that an
assignment of the form “x = t” can be eliminated if its LHS variable x is not live (i.e dead) at
the program point P immediately following the assignment. One of the limitations of DCE is
that it cannot directly eliminate the assignment “x = x + 1” in the two examples shown below:

'

L1: x=x+1
1 x=x+1 If foo() goto L1
2 a=x+2
3 b=a-3
4 c=a+b
5 return L2 y=y+1

In the first case, x is not dead after the “x = x + 1”7 assignment (instruction 1) because it is

used in instruction 2. Instruction 2 is also not dead because its LHS variable (a) is used in
instructions 3 and 4. However, instruction 4 is in fact dead. If we applied DCE repeatedly to
this code, we could eventually eliminate instruction 1. However, it would be more desirable to
eliminate “x = x + 1”7 in a single data flow pass.

In the second case, the LHS of “x = x + 1”7 is not dead because it is used by its own RHS
due to the cycle in the flow graph. However, since the ultimate value of x is never used, this
instruction could in fact be safely eliminated from the loop body.

We say that the LHS variable x in an assignment “x = t” is faint if along every path following
the assignment, x is either dead or is only used by an instruction whose LHS variable is also
faint.

Your mission in this assignment is to design a new dataflow analysis pass specifically for deter-
mining whether the LHS variable of an expression is faint, in both of these cases.

Your analysis should be as simple as possible (i.e., it should not gather unnecessary information),
and as fast as possible. Your analysis will be plugged into a generic dataflow framework (e.g.,
New Dragon Book 9.2-9.3).

1. What is the set of elements that your analysis operates on?

2. What is the direction of your analysis?

. What is your transfer function? Be sure to clearly define any other sets that your transfer
function uses (eg., GEN or KILL etc).

. What is your meet operator? Give the equation that uses the meet operator.

. To what value do you initialize exit and/or entry?

. To what values do you initialize the in or out sets?

. Does the order that your analysis visits basic blocks matter? What order would you
implement and why?

. Will your analysis converge? Why (in words, not a proof)?

. Clearly describe in pseudo-code an algorithm that uses the result of your analysis to
identify faint expressions

10

6 Hand In

Hard-copy submission:

1. A report that briefly describes the implementations of both passes. Explanations of
your thought process and/or any issues you had in the development process would
be welcome.

2. A listing of your source code. One possible way to generate this is by using enscript:

enscript -q -DDuplex:true -r -2 -E -fCourier7 --tabsize=2 -p listing.ps
ps2pdf listing.ps listing.pdf
3. Listings of additional tests that you used for verification of your passes, as well as

their expected results. We expect you to provide at least one of these, and we will
use some of them to test others’ solutions.

4. Answers to the questions in Section

Note: please include the Andrew IDs of group members on each page or on each stapled
group of pages.

Electronic submission:

e A PDF of your writeup report and answers to the questions, named writeup.pdf.

e The source code for your passes (FunctionInfo and LocalOpts), the associated
Makefiles, and a README describing how to build and run them (especially if you
for some reason diverge significantly from what the assignment requires). Place all
of these files in a directory with the same name as the Andrew ID of one of your
group members. Archive this directory and name the file with the same Andrew 1D
(bovik.tar.gz):

tar czvf bovik.tar.gz bovik

When the file is extracted with tar xf, we expect to see these required files in these
locations:

./bovik/README
./bovik/FunctionInfo/FunctionInfo.cpp
./bovik/FunctionInfo/Makefile
./bovik/LocalOpts/LocalOpts.cpp
./bovik/LocalOpts/Makefile
./bovik/writeup.pdf

It is fine if there are other files included; please also include any additional tests you
used for verification.

Copy the tar.gz file into the directory
/afs/cs.cmu.edu/academic/class/15745-s14/public/asst/asstl/handin

Include as comments near the beginning of your source files the identities of all
members of your group. Please comment your code.

11

	Install VirtualBox and the 15-745 System Image
	Create a Pass
	Meet The Functions
	Optimize The Block (New Dragon Book 8.5)
	Implementation Details

	Questions
	CFG Basics
	Available Expressions, New Dragon Book 9.2.6
	New Dataflow Analysis: Faint Analysis

	Hand In

