Lecture 7

More Examples of Data Flow Analysis: Global Common Subexpression Elimination: Constant Propagation/Folding

I. Available Expressions Analysis
II. Eliminating CSEs
III.Constant Propagation/Folding

Reading: 9.2.6, 9.4

- Top?
- Bottom?
- Boundary condition: entry/exit node?
- Initialization for iterative algorithm?

Transfer Functions

- Can use the same equation as reaching definitions - out[b] = gen[b] \cup (in[b] - kill[b])
- Start with the transfer function for a single instruction
- When does the instruction generate an expression?
- When does it kill an expression?
- Calculate transfer functions for complete basic blocks
- Compose individual instruction transfer functions

Global Common Subexpressions

- Availability of an expression E at point P
- DEFINITION: Along every path to P in the flow graph - E must be evaluated at least once
- no variables in E redefined after the last evaluation
- Observations: E may have different values on different paths

Composing Transfer Functions

- Derive the transfer function for an entire block

- Since out1 = in2 we can simplify:
- out2 = gen2 $U(($ gen1 $U($ in1 - kill1 $))-$ kill2 $)$
- out2 $=$ gen2 $\cup($ gen1 - kill2 $) \cup($ in1 $-($ kill \cup kill2 $))$
- out2 $=$ gen2 $\cup($ gen1 - kill2 $) \cup($ in1 - (kill2 $\cup($ kill $1-$ gen2 $)))$
- Result
- gen = gen2 U (gen1 - kill2)
- kill = kill2 U (kill1 - gen2)

15-745: GCSE \& Constants

II. Eliminating CSEs

- Available expressions (across basic blocks)
- provides the set of expressions available at the start of a block
- Value Numbering (within basic block)
- Initialize Values table with available expressions
- If CSE is an "available expression", then transform the code
- Original destination may be:
- a temporary register
- overwritten
- different from the variables on other paths
- One solution: Copy the expression to a new variable at each evaluation reaching the redundant use
III. Limitation: Textually Identical Expressions
- Commutative operations

- sort the operands
\rightarrow sub $\mathrm{t7}=\mathrm{a}, \mathrm{b}$
cpy $m=t 7$
add $t 8=x, y$
add $\mathrm{t} 9=\mathrm{c}$, d
sub $t 5=a, b$
ldc $\mathrm{t} 6=-1$
add $\mathrm{t} 4=\mathrm{x}, \mathrm{y}$
add 1 x x,

Further Improvements

- Examples
- Expressions with more than two operands

- Textually different expressions may be equivalent
add $\mathrm{t} 1=\mathrm{x}, \mathrm{y}$
beq t1, t2, L1
cpy $z=x$
add $\mathrm{t} 3=\mathrm{z}, \mathrm{y}$

15-745: GCSE \& Constants

Another Example

III. Constant Propagation/Folding

- At every basic block boundary, for each variable v
- determine if v is a constant
- if so, what is the value?

Equivalent Definition

- Meet Operation

$\mathbf{v 1}$	$\mathbf{v 2}$	$\mathbf{v 1} \wedge \mathbf{v 2}$
undef	undef	
	c_{2}	
	NAC	
c_{1}	undef	
	c_{2}	
	NAC	
NAC	undef	
	c_{2}	
	NAC	

- Note: undef $\wedge c 2=c 2$!

```
15-745: GCSE & Constants 14 Carnegie Mellon
```


Transfer Function

- Assume a basic block has only 1 instruction
- Let IN[b,x], OUT[b,x]
- be the information for variable x at entry and exit of basic block b
- OUT[entry, x] $=$ undef, for all x.
- Non-assignment instructions: OUT[b,x] = IN[b,x]
- Assignment instructions: (next page)

Constant Propagation (Cont.)

- Let an assignment be of the form $x_{3}=x_{1}+x_{2}$
- "+" represents a generic operator

- Use: $x \leq y$ implies $f(x) \leq f(y)$ to check if framework is monotone - $\left[v_{1} v_{2} \ldots\right] \leq\left[v_{1}^{\prime} v_{2}^{\prime} \ldots\right], f\left(\left[v_{1} v_{2} . ..\right]\right) \leq f\left(\left[v_{1}^{\prime} v_{2}^{\prime} \ldots\right]\right)$

15-745: GCSE \& Constants $17 \quad \begin{gathered}\text { Carnegie Mellon } \\ \text { Todd } C . M O\end{gathered}$ Todd C. Mowry

Distributive?

15-745: GCSE \& Constants
Carnegie Mellon Todd C. Mowry

Summary of Constant Propagation

Other Optimizations

- A useful optimization
- Copy Propagation:
- Illustrates:
- abstract execution
- an infinite semi-lattice
- a non-distributive problem
- Dead Code Elimination:

15-745: GCSE \& Constants $20 \quad$| Carnegie Mellon |
| :---: |
| Todd C. Mowry |

