Lecture 7

More Examples of Data Flow Analysis: Global Common Subexpression Elimination: Constant Propagation/Folding
I. Available Expressions Analysis
II. Eliminating CSEs
III.Constant Propagation/Folding

Reading: 9.2.6, 9.4

Global Common Subexpressions

- Availability of an expression E at point P
- DEFINITION: Along every path to P in the flow graph:
- E must be evaluated at least once
- no variables in E redefined after the last evaluation
- Observations: E may have different values on different paths

Formulating the Problem

- Domain:
- a bit vector, with a bit for each textually unique expression in the program
- Forward or Backward?
- Lattice Elements?
- Meet Operator?
- check: commutative, idempotent, associative
- Partial Ordering
- Top?
- Bottom?
- Boundary condition: entry/exit node?
- Initialization for iterative algorithm?

Transfer Functions

- Can use the same equation as reaching definitions
- out[b] = gen[b] $\cup($ in $[b]-$ kill[b] $)$
- Start with the transfer function for a single instruction
- When does the instruction generate an expression?
- When does it kill an expression?
- Calculate transfer functions for complete basic blocks
- Compose individual instruction transfer functions

Composing Transfer Functions

- Derive the transfer function for an entire block

- Since out1 = in2 we can simplify:
- out2 = gen2 $\cup((g e n 1 \cup(i n 1-k i l l 1))-$ kill2 $)$
- out2 = gen2 U (gen1 - kill2) $\cup(i n 1-($ kill1 U kill2) $)$
- out2 $=$ gen2 $\cup($ gen1 - kill2 $) \cup(i n 1-($ kill2 $\cup($ kill1 - gen2 $)))$
- Result
- gen $=$ gen2 $U($ gen1 - kill2 $)$
- kill = kill2 U (kill1 - gen2)

II. Eliminating CSEs

- Available expressions (across basic blocks)
- provides the set of expressions available at the start of a block
- Value Numbering (within basic block)
- Initialize Values table with available expressions
- If CSE is an "available expression", then transform the code
- Original destination may be:
- a temporary register
- overwritten
- different from the variables on other paths
- One solution: Copy the expression to a new variable at each evaluation reaching the redundant use

Example Revisited

III. Limitation: Textually Identical Expressions

- Commutative operations

- sort the operands

Further Improvements

- Examples
- Expressions with more than two operands

- Textually different expressions may be equivalent

```
add t1 = x, y
```

beq t1, t2, L1
cpy $z=x$
add t3 = z, y

Another Example

Summary

	Reaching Definitions	Available Expressions
Domain	Sets of definitions	Sets of expressions
Transfer function $f_{b}(x)$ Generate U Propagate		
direction of function	forward: out[b] = $f_{b}($ in[b])	forward: out[b] = $f_{b}(i n[b])$
Generate	Gen $_{b}:$ exposed definitions	Gen $_{b}$: expressions evaluated
Propagate	in[b]-Kill $:$ definitions killed	in[b]-Kill $:$ expressions killed
Meet operation	U (in[b]= U out[predecessors])	\cap (in[b]= \cap out[predecessors])
Initialization	out[entry] $=\varnothing$ out[b] $=\varnothing$	out[entry] = \varnothing out[b] = all expressions

III. Constant Propagation/Folding

- At every basic block boundary, for each variable v
- determine if v is a constant
- if so, what is the value?

Semi-lattice Diagram

- Finite domain?
- Finite height?

Equivalent Definition

- Meet Operation:

v1	v2	$\mathrm{v} 1 \wedge \mathrm{v} 2$
undef	undef	
	C_{2}	
	NAC	
c_{1}	undef	
	C_{2}	
	NAC	
NAC	undef	
	C_{2}	
	NAC	

- Note: undef $\wedge c 2=c 2$!

Example

Transfer Function

- Assume a basic block has only 1 instruction
- Let IN $[b, x]$, OUT[b,x]
- be the information for variable x at entry and exit of basic block b
- OUT[entry, x] = undef, for all x.
- Non-assignment instructions: OUT[b,x] = IN[b,x]
- Assignment instructions: (next page)

Constant Propagation (Cont.)

- Let an assignment be of the form $x_{3}=x_{1}+x_{2}$
- "+" represents a generic operator
- OUT $[b, x]=$ IN $[b, x]$, if $x \neq x_{3}$

IN $\left[\mathrm{b}, x_{1}\right]$	IN $\left[\mathrm{b}, x_{2}\right]$	OUT $\left[\mathrm{b}, x_{3}\right]$
undef	undef	
	c_{2}	
	NAC	
	undef	
	c_{2}	
	NAC	
	undef	
	c_{2}	
	NAC	

- Use: $x \leq y$ implies $f(x) \leq f(y)$ to check if framework is monotone
- $\left[v_{1} v_{2} \ldots\right] \leq\left[v_{1}^{\prime} v_{2}^{\prime} \ldots\right], f\left(\left[v_{1} v_{2} \ldots\right]\right) \leq f\left(\left[v_{1}^{\prime} v_{2}{ }^{\prime} . ..\right]\right)$

Distributive?

Summary of Constant Propagation

- A useful optimization
- Illustrates:
- abstract execution
- an infinite semi-lattice
- a non-distributive problem

Other Optimizations

- Copy Propagation:
- Dead Code Elimination:

