Outline

* Navigating and changing the IR

* The machine type system

LLVM, in Greater Detail » Using and writing passes

Thanks to Gabe Weisz for some content.

LLVM Overview LLVM IR

* Mostl hine-ind dent bl
* C++-based compiler framework ostly machine-independent assembly

) - Target triples define alignment, pointer sizes
e (Fairly) well documented API . _
 Arbitrary number of “registers”

 Structures to help you process programs .
- Really, stack locations or SSA values

- Iterators for modules, functions, blocks, uses . . .
- Virtual registers appear in lower-level IRs

— Functions to inspect data types and constants
P P * Locals start with %, globals with @

- Many classes have dump() member functions that print
instances to standard error - Instructions that produce values can be named

* InGDB, use p obj->dump() to see the contents of obj

Iterators — navigating the IR

* Module::iterator * Value::use_iterator

- Modules are translation - Iterates through uses

units - Instructions are values; so
- lterates through functions are constants
in the module - How does SSA help?

* Function::iterator « User::op_iterator

- lterates through a

. i - Iterates over operands.
function's basic blocks

(Instructions are users!)

* BasicBlock::iterator - Many instruction classes

- lterates through
instructions in a block

Instructions

* Instruction is subclassed for various types of
operation

- LoadInst, Storelnst, Cmplnst, Branchlinst, etc

* Most arithmetic operations are BinaryOperators
that contain a code for the operation

* Some instructions can only appear in certain
places

- Branches are only at the end of a basic block

- Phi instructions are only at the beginning

define convenient accessors

- LoadInst::getPointerOperand

More Iterators

Some iterators wrap other iterators

- inst_iterator walks over all instructions in a function

- for (inst_iterator II = inst_begin(f), IE = inst_end(f);
II != IE; ++II)

- InTransforms/Utils/FunctionUtils.h

Prefer ++i over i++ and precompute the end iterator
- Especially for fancier iterators

Most iterators automatically cast to a pointer to the
object type (inst_iterator does not)

Be careful about modifying the object you're iterating
over during iteration

(Re)moving Instructions

eraseFromParent()

- Remove from basic block, drop all references, delete
removeFromParent()

- Remove from basic block

- Use if you will re-attach the instruction

- Does not drop references (or clear the use list), so if you don't
re-attach it Bad Things will happen

moveBefore/insertBefore/insertAfter are also
available

ReplaceInstWithValue and
ReplaceInstWithInst are also useful to have

IR Types

* Primitive types

— Integers (iN of N bits, N from 1 to 2%-1)

- Floating point (half, float, double, x86 fp89, ...)
- Weirdos (x86mmx, void, ...)

* Derived types

- Arrays ([# elements (>= 0) x element type])

Functions (returntype (paramlist))

Pointers (type*, type addrspace(N)*)

Vectors (<# elements (>0) x element type>)

Structures ({ typelist })...

Identified Structs

LLVM 3 came with a redesign of the IR type system mainly
over the issue of recursive and abstract types

Literal structs are compared by shape and must not be
recursive; all fields must be known

- {i32, i32}; StructType::get

Only identified structs can be recursive; declaration and
definition of fields is separate

- %T1 = type { typelist }; StructType::create

- type list may directly or indirectly refer to %T1

- %T1 = type opaque - “I'll fill in the fields later.”

LLVM may rename your identifiers
1

IR Types

« getelementptr instruction gives you the address
of a field or an array cell (why have this?)

* Typesin the LLVM IR are structural

- Mostly compared by shape, not by name

* Once allocated, there is only one 32-bit integer until the end
of time

- Only one instance of a given shape exists at once
¢ Benefit?
- Exception: “identified” structures

* Problem: how do you write down the type of a singly-linked

list?
Examples of Types
[46 x 132]
[3 x [4 x 132]]

%sll =
type { 132, ZslLL* }

132 (BslLL*)*
%struct.a =
type { Z%struct.b* }

%Zstruct.b =
type opaque

{ 132, [0 x float] }

10

12

Last words about opaque types Passes
e Opaque types are not void* (C void* is 18%*) e For assignments, don't use provided LLVM passes

e Consider $Llocal_a = alloca %a, align 4 unless instructed to

- %a = type { %b* }
%b = type opaque

- We want you to implement them yourself to
understand how they really work

+ OK! * For projects, use whatever you want
- %a = type { %b } Two major kinds of passes
%b = type opaque

« “Cannot allocate unsized type” - Analysis: provide information

- %a = type { %b }
%b = type { %a }

* “Segmentation fault”

— Transform: modify the program

13

Module Verifier (-verify) The mem2reg transform pass

* opt runs this automatically unless you disable it * The LLVM IR is natively SSA

— An Instruction is the same thing as the Value it
produces

* Sanity-checks passes

- You may need to break module invariants while
operating on them, eg: - %foo = instinthe LLVM IR just gives a name to inst

. in the syntax; %foo does not exist inside the compiler
* Types of binary operator parameters are the same

* Terminators (branches) only at the end of basic blocks
* Functions are called with correct argument types

* Instructions belong to basic blocks

* Constants in a switch are the right type

* Entry node has no predecessors (and so on...)

15

It may be nontrivial for frontends to emit SSA
directly

mem2reg understands certain use patterns that
frontends use to emit “variables”

16

mem2reg conventions mem2reg might add SSA features

. ; ; ; int ssa2
int ssal() { gore]:\;e i32 @ssal() nounwind { int y (2.{
. . B 3 . . .
int z = () + 1; %call = call i32 @F() y = £O); define i32 @ssa2() nounwind {
. ° - ‘ 4 entry:
return z; %add.= add nsw i32 %call, 1 if (y < 9) %call = call i32 @F()
} ret i32 %add z =y + 1; %cmp = icmp slt i32 %call, o
} else br il %cmp, label %if.then, label %if.else
= + M
) 12: y . 25 if.then:
alloca in the entry block define i32 @Ssal() nounwind { return z; %add = add nsw i32 %call, 1
\Sntry: } br label %if.end
%z = alloca i32, align 4 .
o B X if.else:
;Cgél = ;311 13?3(2{;) L1 %addl = add nsw i32 %call, 2
cadd = add nsw 152 ACall, br label %if.end
only used by load and store i store i32 %add, i32* %z, align 4
%0 = load i32* %z, align 4 if.end:
ret i32 %0 %z.0 = phi i32 [%add, %if.then], [%addl, %if.else]
} ret i32 %z.o
}
17 18
Rules for Phi instructions mem?2reg confuses easily
* phi type [vall, inedgel], [val2, inedge2] int ssa3() {
int z;
- Select vall if coming from inedgel; val2 if from inedge2 return *(& + 1 - 1);
. }
* Phi nodes may refer to themselves (loops!) and may select
undef (undefined) values for certain in-edges define i32 @ssa3() nounwind {
entry:
* Placement requirements: %z = alloca 132, align 4
getelementptr %add.ptr = getelementptr inbounds i32* %z, i32 1
- must be at the beginning of the block abstracts away %add.ptrl = getelementptr inbounds i32* %add.ptr, i32 -1
offset calculation %0 = load i32* %add.ptrl, align 4
- must have one entry for each predecessor ret 132 %o

- must have at least one entry

Why not make mem2reg smarter?
(note that compiling with -O2 optimizes this down to ret undef)

19 20

Loop information (-loops)

Analysis/LooplInfo.h
Basic blocks in a loop
Headers and pre-headers
Exit and exiting blocks
Back-edges

“Canonical induction variable”

— Starts at 0 and counts up by 17?

— Starts at some number and counts down to O

Loop count
21

Scalar Evolution (-scalar-evolution)

Tracks changes to variables through multiple loop
nests

Gives start value, step size, kind of evolution

Constant

Add a value each iteration

Multiply a value each iteration

More complicated relationships as well

Useful to aggregate accesses into arrays into larger
blocks or to improve cache performance

23

Using an analysis pass

#include "llvm/Analysis/LoopInfo.h"

AU.addRequired<LoopInfo>();
in getAnalysisUsage()

LoopInfo& LI = getAnalysis<LoopInfo>(F);
in a function called from runOnModule
with function F inside that module

LI.dump()

“Loop at depth 1 containing:
%for.cond<header><exiting>,%for.body,
%for.inc<latch>” (from loop.c)

PassManager sequences both kinds of passes using
getAnalysisUsage()

Target Data (-targetdata)

Endian-ness

Pointer sizes

Alignment

Actual size (in bits) of variables

Actual layout of structures

- (taking into account platform alignment requirements)

22

24

Alias Analyses

If we know that
%A '= %B = %C
we have more freedom to
reorder code,
promote to registers, etc.

%1 = load i32* %A
store i32 5, i32* %B
%3 = add i32 %1, i32 9
store 132 %3, i32* %C

LLVM includes a number of passes that collect various
kinds of alias information

Can get information about both global and local variables

Included passes take into account the behavior of the C
standard library (eg, sin() will not make new aliases)

Other useful passes

Liveness-based dead code elimination

- Assumes code is dead unless proven otherwise
Sparse conditional constant propagation

- Aggressively search for constants

Correlated propagation

- Replace select instructions that select on a constant
Loop invariant code motion

- Move code out of loops where possible

Dead global elimination

Canonicalize induction variables

- All loops start from 0

Canonicalize loops

- Put loop structures in standard form

25

27

Simplify CFG

* A cleanup pass

* Removes unnecessary basic blocks by merging

unconditional branches if the second block has only

one predecessor

g - D

e Removes unreachable blocks

* Removes Phi instructions in blocks with single
predecessors

Notes on Writing Passes

* Declare which passes you use (and what your pass

mutates) in getAnalysisUsage

* The CommandlLine library allows you to add
command line parameters very quickly

- Conflicts in parameter names won't show up until
runtime, since passes are loaded dynamically

* Be mindful of correctness; the module verifier is
like a syntax checker

— Does your pass make sense in a multithreaded
environment?

26

28

Transformations and memory

For regular loads/stores, LLVM forbids introducing new
stores to externally observable locations:

int x; int x;
void f(int* a) { void f(int* a) {
for (int i = 0; i < 100; i++) { int xtemp = x;

if (a[il]) for (int i = 0; i < 100; i++) {
X += 1; \®\> if (a[i])
} xtemp += 1;
} }
X
}

= xtemp;

volatile marks memory operations that cannot be
reordered (wrt volatile operations) or removed

To support new features in C++11, LLVM provides other

atomic orderings that can be applied to loads and stores

29

Links

When in doubt, read the documentation—and the
code!

- http://llvm.org/doxygen/
Articles on the LLVM site are very useful

- http://llvm.org/docs/Passes.html

- http://llvm.org/docs/ProgrammersManual.html
- http://llvm.org/docs/Atomics.html

- http://llvm.org/docs/LangRef.html

31

Projects using LLVM

 Just a few from llvm.org:

Clang: a C-family language frontend

LLDB: an improved debugger using Clang data
vmkit: building Java/.NET VMs

klee: a symbolic virtual machine for LLVM IR
Emscripten: LLVM bitcode - JavaScript
- http://emscripten.org/

e Vellvm: a formalization of the LLVM IR

- http://www.cis.upenn.edu/~jianzhou/Vellvm/

30

Supplemental

32

High-level view of atomic orderings Atomic orderings and you

* NotAtomic — ordinary loads/stores; races are undefined * If your project is about fine-grained parallelism or
e Unordered — races have “somewhat sane” results lock-free data structures, you need to think about
- Aload cannot see a value which was never stored these things
- May not be supported for all types on all platforms - LLVM also exposes cmpxchg, atomicrmw, fence
- Used for shared variables in Java, “safe” languages - LLVM does not expose LL/SC
* Monotonic — single locations have consistent order * If not, just don't, in general:
* Acquire/Release — when paired together, strong enough to — reorder LLVM volatile operations wrt other volatile
write a lock operations
all SequentiallyConsistent operations have a total order have been previously stored to
- Javavolatile e More details at http://llvm.org/docs/LangRef.html#memmodel
33 34

Your module, post-IL LLVM IL - SelectionDAG

define i32 @foo(i32 %a, i32 %b) nounwind {
entry:

%cmp = icmp sgt i32 %a, %b

br i1 %cmp, label %if.then, label %if.else

* LLVM still has to generate machine code!

* Your module goes through ~3 more stages:

if.then:
LLVM IL %add = add nsw i32 %a, %b
‘ br label %return

SelectionDAG if.else:
%sub = sub nsw i32 %a, %b
‘ br label %return
MachineFunction
return:
‘ %retval.0 = phi i32 [%add, %if.then],

[%sub, %if.else]
ret i32 %retval.o
}

35 36

Object File

LLVM IL = SelectionDAG SelectionDAG transformations

if.then: return:
%add = add nsw i32 %a, %b %retval.@ = phi i32 ... e Build initi
: uild initial DAG from LLVM IR
br label %return ret i32 %retval.o
| e I £ B * Simplify!
ch J‘L 132) U 132) ch i32

[

Legalize types (vectors = scalars)

~ ‘f— / 7 DA
0 [1 0 [1 7 T
CopyFrom Reg [ORD=3] CopyFrom Reg [ORD=3] [rav—— 0 1

[[Register %EAX] [—
0xadf00d8 Oxadefb88 i CopyFrom Reg

i | oxbisdbss
i2 | e i32 ch | 0xb18de 10

< e Simplify!

1 \ i32 | ch
] ~ \

LV [Register % vreg) N\

| £ £ [Tadd (oroa) P

\ C = 0xadf 0160

g Legalize ops (x86 doesn't do byte-size CMOVs)

0xb18e160
il6

i CopyToReg

0xb18c0d8

Simplify!

— T R * Select instructions
\0 1 - ch

} e Schedule instructions
1 Cammmon> [

dag-com binel input for foo:if.then dag-combinel input for foo:return 37

oReg
Oxadef858
ch

Instruction selection Target-Independent Code Generation

o T 7 V(o T

CopyFrom Reg [0RD3] | | CopyFrom Reg [ORD3] * There are a lot of different machines!

0xadf00d8 Oxadefb88
2 | oh o i32 | o - And even on x86, there are a lot of different ADDs!
— o [e Make the process data-driven
gister % vrffg0 —_—
add [ORD=3]
0xadf0050
0xadf0160
132 i32
S
| R | X86.td Register information
0 1 0 1
CopyFrom Reg [ORD=3] CopyFrom Reg [ORD=3]
0xa2¢d0do 0xa2cch80 ARM. td Instruction selector
U -2 | o tablegen
| PPC.td Scheduling information
\\ Register %vreg AD8Zv: [ORD3)
\ 0Oxa2cd048
\ Oxa2cd158
i32

39

tablegen

* The tablegen tool is run when compiling the
LLVM library for each target

* |t accepts a custom text-based record description
format and generates C++ definitions using various
backends

- defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04,
MRMOm, X86add_flag, add, 1, 1>;

"add", MRMer,

- ArithBinOp_RF is actually another macro...

* There is still a lot of human-written code in the
backends (X86 instruction encoding, for one)

41

Scheduling

(SL,(4) CopyFrom Reg [ORD=3] I[F4ﬂ (SL(}): CopyFrom Reg [ORD=3]

0xa460040) k
\ /'

(SU(Z) ADD32rr [ORD=3] lD:Z
0xa45fe70

[1D3])
0xadSEE58)

(SU(I): CopyToReg [ID=1]W
0xadsfdss)

WO0): JMP_ 4 [1D=0]

l Oxa45fcal J

Scheduling-Units Graph for sunit-dag.foo:if.then

We have choices to make
(here, which CopyFromReg executes first?)

43

ADD32rr

dag OutOperandList = (outs GR32:$dst);
dag InOperandList = (ins GR32:$srcl, GR32:$src2);

list<dag> Pattern =
[(set GR32:$dst, EFLAGS,
(X86add_flag GR32:$srcl, GR32:$src2))];
list<Register> Uses = [];
list<Register> Defs = [EFLAGS];

InstrItinClass Itinerary = IIC_BIN_NONMEM;
string Constraints = "$srcl = $dst”;

Scheduling

I ST
/ [Register % EAX
! CopyFrom Reg

0xa480bd0
0xa480c58

‘

\\\ \ﬁ'}fy i32 | ch
\\\ ﬁU(1): CopyFrom Reg [I Iﬁlh
7 L)

/0_]’]_[_2\ N 0xa4i00]8

CopyToReg

0xa481120
ch glue >>
i

SU(0): CopyToReg [1D=0]
RET [1D=0]

0xa45££30 |

0 1 cheduling-Units Graph for sunit-dag.foo:retur
RET
0xa4808a0
./
ch

Chains add control dependency.
Glue forbids breaking up instructions.

42

44

Lowering to MC

BB#1: derived from LLVM BB %if.then
%vreg@<def,tiedl> = ADD32rr
kvreg3<tiedo>,
%vrega,
%EFLAGS<imp-def,dead>;
GR32:%vreg0,%vreg3,%vregs
JMP_4 <BB#3>

Virtual registers

Tied registers

Register classes

BB#3: derived from LLVM BB %return
kvreg2<def> = PHI
%vregl, <BB#2>, %vreg@, <BB#1>;
GR32:%vreg2,%vregl,%vrego
%EAX<def> = COPY %vreg2; GR32:%vreg2
RET

Still in SSA

45

Thanks, abstraction!

FRONTEND

LLVM

OBJECT FILE You don't have to look here!

(Unless you're studying it...)

47

MC transformations

SSA-based MC optimizations

Register allocation

— 2AC correction and Leave SSA; copy coalescing; add
spillcode

Prolog/epilog insertion
Stack layout
Last-chance MC optimizations/spillcode scheduling

Encoding

46

