Outline

* Navigating and changing the IR

* The machine type system

LLVM, in Greater Detail » Using and writing passes

Thanks to Gabe Weisz for some content.

LLVM Overview LLVM IR

* Mostl hine-ind dent bl
* C++-based compiler framework ostly machine-independent assembly

) - Target triples define alignment, pointer sizes
e (Fairly) well documented API . _
 Arbitrary number of “registers”

 Structures to help you process programs .
- Really, stack locations or SSA values

- Iterators for modules, functions, blocks, uses . . .
- Virtual registers appear in lower-level IRs

— Functions to inspect data types and constants
P P * Locals start with %, globals with @

- Many classes have dump() member functions that print
instances to standard error - Instructions that produce values can be named

* InGDB, use p obj->dump() to see the contents of obj



Iterators — navigating the IR

* Module::iterator * Value::use_iterator

- Modules are translation - Iterates through uses

units - Instructions are values; so
- lterates through functions are constants
in the module - How does SSA help?

* Function::iterator « User::op_iterator

- lterates through a

. i - Iterates over operands.
function's basic blocks

(Instructions are users!)

* BasicBlock::iterator - Many instruction classes

- lterates through
instructions in a block

Instructions

* Instruction is subclassed for various types of
operation

- LoadInst, Storelnst, Cmplnst, Branchlinst, etc

* Most arithmetic operations are BinaryOperators
that contain a code for the operation

* Some instructions can only appear in certain
places

- Branches are only at the end of a basic block

- Phi instructions are only at the beginning

define convenient accessors

- LoadInst::getPointerOperand

More Iterators

Some iterators wrap other iterators

- inst_iterator walks over all instructions in a function

- for (inst_iterator II = inst_begin(f), IE = inst_end(f);
II != IE; ++II)

- InTransforms/Utils/FunctionUtils.h

Prefer ++i over i++ and precompute the end iterator
- Especially for fancier iterators

Most iterators automatically cast to a pointer to the
object type (inst_iterator does not)

Be careful about modifying the object you're iterating
over during iteration

(Re)moving Instructions

eraseFromParent()

- Remove from basic block, drop all references, delete
removeFromParent()

- Remove from basic block

- Use if you will re-attach the instruction

- Does not drop references (or clear the use list), so if you don't
re-attach it Bad Things will happen

moveBefore/insertBefore/insertAfter are also
available

ReplaceInstWithValue and
ReplaceInstWithInst are also useful to have



IR Types

* Primitive types

— Integers (iN of N bits, N from 1 to 2%-1)

- Floating point (half, float, double, x86 fp89, ...)
- Weirdos (x86mmx, void, ...)

* Derived types

- Arrays ([# elements (>= 0) x element type])

Functions (returntype (paramlist))

Pointers (type*, type addrspace(N)*)

Vectors (<# elements (>0) x element type>)

Structures ({ typelist })...

Identified Structs

LLVM 3 came with a redesign of the IR type system mainly
over the issue of recursive and abstract types

Literal structs are compared by shape and must not be
recursive; all fields must be known

- {i32, i32}; StructType::get

Only identified structs can be recursive; declaration and
definition of fields is separate

- %T1 = type { typelist }; StructType::create

- type list may directly or indirectly refer to %T1

- %T1 = type opaque - “I'll fill in the fields later.”

LLVM may rename your identifiers
1

IR Types

« getelementptr instruction gives you the address
of a field or an array cell (why have this?)

* Typesin the LLVM IR are structural

- Mostly compared by shape, not by name

* Once allocated, there is only one 32-bit integer until the end
of time

- Only one instance of a given shape exists at once
¢ Benefit?
- Exception: “identified” structures

* Problem: how do you write down the type of a singly-linked

list?
Examples of Types
[46 x 132]
[3 x [4 x 132]]

%sll =
type { 132, ZslLL* }

132 (BslLL*)*
%struct.a =
type { Z%struct.b* }

%Zstruct.b =
type opaque

{ 132, [0 x float] }
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Last words about opaque types Passes
e Opaque types are not void* (C void* is 18%*) e For assignments, don't use provided LLVM passes

e Consider $Llocal_a = alloca %a, align 4 unless instructed to

- %a = type { %b* }
%b = type opaque

- We want you to implement them yourself to
understand how they really work

+ OK! * For projects, use whatever you want
- %a = type { %b }  Two major kinds of passes
%b = type opaque

« “Cannot allocate unsized type” - Analysis: provide information

- %a = type { %b }
%b = type { %a }

* “Segmentation fault”

— Transform: modify the program
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Module Verifier (-verify) The mem2reg transform pass

* opt runs this automatically unless you disable it * The LLVM IR is natively SSA

— An Instruction is the same thing as the Value it
produces

* Sanity-checks passes

- You may need to break module invariants while
operating on them, eg: - %foo = instinthe LLVM IR just gives a name to inst

. in the syntax; %foo does not exist inside the compiler
* Types of binary operator parameters are the same

* Terminators (branches) only at the end of basic blocks
* Functions are called with correct argument types

* Instructions belong to basic blocks

* Constants in a switch are the right type

* Entry node has no predecessors (and so on...)
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It may be nontrivial for frontends to emit SSA
directly

mem2reg understands certain use patterns that
frontends use to emit “variables”

16



mem2reg conventions mem2reg might add SSA features

. ; ; ; int ssa2
int ssal() { gore]:\;e i32 @ssal() nounwind { int y (2.{
. . B 3 . . .
int z = () + 1; %call = call i32 @F() y = £O); define i32 @ssa2() nounwind {
. ° - ‘ 4 entry:
return z; %add.= add nsw i32 %call, 1 if (y < 9) %call = call i32 @F()
} ret i32 %add z =y + 1; %cmp = icmp slt i32 %call, o
} else br il %cmp, label %if.then, label %if.else
= + M
) 12: y . 25 if.then:
alloca in the entry block define i32 @Ssal() nounwind { return z; %add = add nsw i32 %call, 1
\Sntry: } br label %if.end
%z = alloca i32, align 4 .
o B X if.else:
;Cgél = ;311 13?3(2{;) L1 %addl = add nsw i32 %call, 2
cadd = add nsw 152 ACall, br label %if.end
only used by load and store i store i32 %add, i32* %z, align 4
%0 = load i32* %z, align 4 if.end:
ret i32 %0 %z.0 = phi i32 [ %add, %if.then ], [ %addl, %if.else ]
} ret i32 %z.o
}
17 18
Rules for Phi instructions mem?2reg confuses easily
* phi type [ vall, inedgel ], [ val2, inedge2 ] int ssa3() {
int z;
- Select vall if coming from inedgel; val2 if from inedge2 return *(& + 1 - 1);
. }
* Phi nodes may refer to themselves (loops!) and may select
undef (undefined) values for certain in-edges define i32 @ssa3() nounwind {
entry:
* Placement requirements: %z = alloca 132, align 4
getelementptr %add.ptr = getelementptr inbounds i32* %z, i32 1
- must be at the beginning of the block abstracts away %add.ptrl = getelementptr inbounds i32* %add.ptr, i32 -1
offset calculation %0 = load i32* %add.ptrl, align 4
- must have one entry for each predecessor ret 132 %o

- must have at least one entry

Why not make mem2reg smarter?
(note that compiling with -O2 optimizes this down to ret undef)
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Loop information (-loops)

Analysis/LooplInfo.h
Basic blocks in a loop
Headers and pre-headers
Exit and exiting blocks
Back-edges

“Canonical induction variable”

— Starts at 0 and counts up by 17?

— Starts at some number and counts down to O

Loop count
21

Scalar Evolution (-scalar-evolution)

Tracks changes to variables through multiple loop
nests

Gives start value, step size, kind of evolution

Constant

Add a value each iteration

Multiply a value each iteration

More complicated relationships as well

Useful to aggregate accesses into arrays into larger
blocks or to improve cache performance
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Using an analysis pass

#include "llvm/Analysis/LoopInfo.h"

AU.addRequired<LoopInfo>();
in getAnalysisUsage()

LoopInfo& LI = getAnalysis<LoopInfo>(F);
in a function called from runOnModule
with function F inside that module

LI.dump()

“Loop at depth 1 containing:
%for.cond<header><exiting>,%for.body,
%for.inc<latch>” (from loop.c)

PassManager sequences both kinds of passes using
getAnalysisUsage()

Target Data (-targetdata)

Endian-ness

Pointer sizes

Alignment

Actual size (in bits) of variables

Actual layout of structures

- (taking into account platform alignment requirements)
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Alias Analyses

If we know that
%A '= %B = %C
we have more freedom to
reorder code,
promote to registers, etc.

%1 = load i32* %A
store i32 5, i32* %B
%3 = add i32 %1, i32 9
store 132 %3, i32* %C

LLVM includes a number of passes that collect various
kinds of alias information

Can get information about both global and local variables

Included passes take into account the behavior of the C
standard library (eg, sin() will not make new aliases)

Other useful passes

Liveness-based dead code elimination

- Assumes code is dead unless proven otherwise
Sparse conditional constant propagation

- Aggressively search for constants

Correlated propagation

- Replace select instructions that select on a constant
Loop invariant code motion

- Move code out of loops where possible

Dead global elimination

Canonicalize induction variables

- All loops start from 0

Canonicalize loops

- Put loop structures in standard form

25
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Simplify CFG

* A cleanup pass

* Removes unnecessary basic blocks by merging

unconditional branches if the second block has only

one predecessor

g - D

e Removes unreachable blocks

* Removes Phi instructions in blocks with single
predecessors

Notes on Writing Passes

* Declare which passes you use (and what your pass

mutates) in getAnalysisUsage

* The CommandlLine library allows you to add
command line parameters very quickly

- Conflicts in parameter names won't show up until
runtime, since passes are loaded dynamically

* Be mindful of correctness; the module verifier is
like a syntax checker

— Does your pass make sense in a multithreaded
environment?

26
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Transformations and memory

For regular loads/stores, LLVM forbids introducing new
stores to externally observable locations:

int x; int x;
void f(int* a) { void f(int* a) {
for (int i = 0; i < 100; i++) { int xtemp = x;

if (a[il]) for (int i = 0; i < 100; i++) {
X += 1; \®\> if (a[i])
} xtemp += 1;
} }
X
}

= xtemp;

volatile marks memory operations that cannot be
reordered (wrt volatile operations) or removed

To support new features in C++11, LLVM provides other

atomic orderings that can be applied to loads and stores
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Links

When in doubt, read the documentation—and the
code!

- http://llvm.org/doxygen/
Articles on the LLVM site are very useful

- http://llvm.org/docs/Passes.html

- http://llvm.org/docs/ProgrammersManual.html
- http://llvm.org/docs/Atomics.html

- http://llvm.org/docs/LangRef.html
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Projects using LLVM

 Just a few from llvm.org:

Clang: a C-family language frontend

LLDB: an improved debugger using Clang data
vmkit: building Java/.NET VMs

klee: a symbolic virtual machine for LLVM IR
Emscripten: LLVM bitcode - JavaScript
- http://emscripten.org/

e Vellvm: a formalization of the LLVM IR

- http://www.cis.upenn.edu/~jianzhou/Vellvm/

30

Supplemental
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High-level view of atomic orderings Atomic orderings and you

* NotAtomic — ordinary loads/stores; races are undefined * If your project is about fine-grained parallelism or
e Unordered — races have “somewhat sane” results lock-free data structures, you need to think about
- Aload cannot see a value which was never stored these things
- May not be supported for all types on all platforms - LLVM also exposes cmpxchg, atomicrmw, fence
- Used for shared variables in Java, “safe” languages - LLVM does not expose LL/SC
* Monotonic — single locations have consistent order * If not, just don't, in general:
* Acquire/Release — when paired together, strong enough to — reorder LLVM volatile operations wrt other volatile
write a lock operations
all SequentiallyConsistent operations have a total order have been previously stored to
- Javavolatile e More details at http://llvm.org/docs/LangRef.html#memmodel
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Your module, post-IL LLVM IL - SelectionDAG

define i32 @foo(i32 %a, i32 %b) nounwind {
entry:

%cmp = icmp sgt i32 %a, %b

br i1 %cmp, label %if.then, label %if.else

* LLVM still has to generate machine code!

* Your module goes through ~3 more stages:

if.then:
LLVM IL %add = add nsw i32 %a, %b
‘ br label %return

SelectionDAG if.else:
%sub = sub nsw i32 %a, %b
‘ br label %return
MachineFunction
return:
‘ %retval.0 = phi i32 [ %add, %if.then ],

[ %sub, %if.else ]
ret i32 %retval.o
}
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Object File




LLVM IL = SelectionDAG SelectionDAG transformations

if.then: return:
%add = add nsw i32 %a, %b %retval.@ = phi i32 ... e Build initi
: uild initial DAG from LLVM IR
br label %return ret i32 %retval.o
| e I £ B * Simplify!
ch J‘L 132 ) U 132 ) ch i32

[

Legalize types (vectors = scalars)

~ ‘f— / 7 DA
0 [ 1 0 [ 1 7 T
CopyFrom Reg [ ORD=3] CopyFrom Reg [ ORD=3] [ rav—— 0 1

[ [Register %EAX] [—
0xadf00d8 Oxadefb88 i CopyFrom Reg

i | oxbisdbss
i2 | e i32 ch | 0xb18de 10

< e Simplify!

1 \ i32 | ch
] ~ \

LV [Register % vreg) N\

| £ £ [Tadd (oroa) P

\ C = 0xadf 0160

g Legalize ops (x86 doesn't do byte-size CMOVs)

0xb18e160
il6

i CopyToReg

0xb18c0d8

Simplify!

— T R * Select instructions
\0 1 - ch

} e Schedule instructions
1 Cammmon> [

dag-com binel input for foo:if.then dag-combinel input for foo:return 37

oReg
Oxadef858
ch

Instruction selection Target-Independent Code Generation

o T 7 V(o T

CopyFrom Reg [0RD3] | | CopyFrom Reg [ORD3] * There are a lot of different machines!

0xadf00d8 Oxadefb88
2 | oh o i32 | o - And even on x86, there are a lot of different ADDs!
— o [ e Make the process data-driven
gister % vrffg0 —_—
add [ ORD=3]
0xadf0050
0xadf0160
132 i32
S
| R | X86.td Register information
0 1 0 1
CopyFrom Reg [ ORD=3] CopyFrom Reg [ ORD=3]
0xa2¢d0do 0xa2cch80 ARM. td Instruction selector
U -2 | o tablegen
| PPC.td Scheduling information
\\ Register %vreg AD8Zv: [ORD3)
\ 0Oxa2cd048
\ Oxa2cd158
i32
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tablegen

* The tablegen tool is run when compiling the
LLVM library for each target

* |t accepts a custom text-based record description
format and generates C++ definitions using various
backends

- defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04,
MRMOm, X86add_flag, add, 1, 1>;

"add", MRMer,

- ArithBinOp_RF is actually another macro...

* There is still a lot of human-written code in the
backends (X86 instruction encoding, for one)
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Scheduling

(SL,(4) CopyFrom Reg [ ORD=3] I[F4ﬂ (SL(}): CopyFrom Reg [ ORD=3]

0xa460040 ) k
\ /'

(SU(Z) ADD32rr [ ORD=3] lD:Z
0xa45fe70

[1D3])
0xadSEE58 )

(SU(I): CopyToReg [ID=1]W
0xadsfdss )

WO0): JMP_ 4 [1D=0]

l Oxa45fcal J

Scheduling-Units Graph for sunit-dag.foo:if.then

We have choices to make
(here, which CopyFromReg executes first?)
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ADD32rr

dag OutOperandList = (outs GR32:$dst);
dag InOperandList = (ins GR32:$srcl, GR32:$src2);

list<dag> Pattern =
[(set GR32:$dst, EFLAGS,
(X86add_flag GR32:$srcl, GR32:$src2))];
list<Register> Uses = [];
list<Register> Defs = [EFLAGS];

InstrItinClass Itinerary = IIC_BIN_NONMEM;
string Constraints = "$srcl = $dst”;

Scheduling

I ST
/ [Register % EAX
! CopyFrom Reg

0xa480bd0
0xa480c58

‘

\\\ \ﬁ'}fy i32 | ch
\\\ ﬁU( 1): CopyFrom Reg [I Iﬁlh
7 L )

/0_]’]_[_2\ N 0xa4i00]8

CopyToReg

0xa481120
ch glue >>
i

SU(0): CopyToReg [1D=0]
RET [1D=0]

0xa45££30 |

0 1 cheduling-Units Graph for sunit-dag.foo:retur
RET
0xa4808a0
./
ch

Chains add control dependency.
Glue forbids breaking up instructions.
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Lowering to MC

BB#1: derived from LLVM BB %if.then
%vreg@<def,tiedl> = ADD32rr
kvreg3<tiedo>,
%vrega,
%EFLAGS<imp-def,dead>;
GR32:%vreg0,%vreg3,%vregs
JMP_4 <BB#3>

Virtual registers

Tied registers

Register classes

BB#3: derived from LLVM BB %return
kvreg2<def> = PHI
%vregl, <BB#2>, %vreg@, <BB#1>;
GR32:%vreg2,%vregl,%vrego
%EAX<def> = COPY %vreg2; GR32:%vreg2
RET

Still in SSA
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Thanks, abstraction!

FRONTEND

LLVM

OBJECT FILE You don't have to look here!

(Unless you're studying it...)
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MC transformations

SSA-based MC optimizations

Register allocation

— 2AC correction and Leave SSA; copy coalescing; add
spillcode

Prolog/epilog insertion
Stack layout
Last-chance MC optimizations/spillcode scheduling

Encoding
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