
1

Data Dependence, Parallelization,
and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

Todd C. Mowry

Carnegie Mellon

y y

Data Dependence

DCA:S
2.0AB:S

1.0A:S

3

2

1

 Flow (true) dependence: a statement Si precedes a
statement Sj in execution and Si computes a data value that

We define four types of data dependence.

B/CA:S4

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -2-

j
Sj uses.

 Implies that Si must execute before Sj.

)SδSandSδ(SSδS 4
t

22
t

1j
t

i

DCA:S
2.0AB:S

1.0A:S

3

2

1

Data Dependence

 Anti dependence: a statement Si precedes a statement Sj in
execution and Si uses a data value that Sj computes.

B/CA:S4

We define four types of data dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -3-

j

 It implies that Si must be executed before Sj.

)Sδ(SSδS 3
a

2j
a

i

DCA:S
2.0AB:S

1.0A:S

3

2

1

Data Dependence

 Output dependence: a statement Si precedes a statement Sj
in execution and Si computes a data value that Sj also

B/CA:S4

We define four types of data dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -4-

j
computes.

 It implies that Si must be executed before Sj.

)SδSandSδ(SSδS 4
o

33
o

1j
o

i

2

DCA:S
2.0AB:S

1.0A:S

3

2

1

Data Dependence

 Input dependence: a statement Si precedes a statement Sj
in execution and Si uses a data value that Sj also uses.

B/CA:S4

We define four types of data dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -5-

j

 Does this imply that Si must execute before Sj?

)Sδ(SSδS 4
I

3j
I

i

Data Dependence (continued)
 The dependence is said to flow from Si to Sj because Si

precedes Sj in execution.

 Si is said to be the source of the dependence. Sj is said to
be the sink of the dependence.

 The only “true” dependence is flow dependence; it
represents the flow of data in the program.

 The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

1.0A:S1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -6-

B/CA2:S

DCA1:S
2.0AB:S

4

3

2

1

Data Dependence (continued)
 Data dependence in a program may be represented using a

dependence graph G=(V,E), where the nodes V represent
statements in the program and the directed edges E
represent dependence relations.

S1

S2

t

o

DCA:S
2.0AB:S

1.0A:S

3

2

1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -7-

S3

S4

o
t

IB/CA:S4

Value or Location?
 There are two ways a dependence is defined: value-oriented

or location-oriented.

B/CA:S

DCA:S
2.0AB:S

1.0A:S

4

3

2

1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -8-

4

3

Example 1

do i = 2, 4
S1: a(i) = b(i) + c(i)
S : d(i) (i)

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S2: d(i) = a(i)
end do

a(2) a(2) a(3) a(3) a(4) a(4)
t t t

 There is an instance of S1 that precedes an instance of S2 in
execution and S1 produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the
dependence.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -9-

 The dependence flows between instances of statements in the
same iteration (loop-independent dependence).

 The number of iterations between source and sink (dependence
distance) is 0. The dependence direction is =.

2
t

1 SδS 2
t
01 SδSor

Example 2

do i = 2, 4
S1: a(i) = b(i) + c(i)
S : d(i) (i 1)

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S2: d(i) = a(i-1)
end do

a(2) a(1) a(3) a(2) a(4) a(3)

t t

 There is an instance of S1 that precedes an instance of S2 in
execution and S1 produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the
d d

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -10-

dependence.
 The dependence flows between instances of statements in

different iterations (loop-carried dependence).
 The dependence distance is 1. The direction is positive (<).

2
t

1 SδS 2SδS t
11or

Example 3

do i = 2, 4
S1: a(i) = b(i) + c(i)
S : d(i) (i 1)

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

S2: d(i) = a(i+1)
end do

a(2) a(3) a(3) a(4) a(4) a(5)
a a

 There is an instance of S2 that precedes an instance of S1 in
execution and S2 consumes data that S1 produces.

 S2 is the source of the dependence; S1 is the sink of the
dependence.
The dependence is loop carried

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -11-

1
a

2 SδS 1
a
12 SδSor

 The dependence is loop-carried.
 The dependence distance is 1.

 Are you sure you know why it is even though S1 appears
before S2 in the code?

1
a

2 SS <

Example 4

do i = 2, 4
do j = 2, 4

S: a(i,j) = a(i-1,j+1)
end do

S[2,2] S[2,3] S[2,4]
a(1,3) a(1,4) a(1,5)

end do

S[3,2] S[3,3] S[3,4]
a(2,3) a(2,4) a(2,5)

a(2,2) a(2,3) a(2,4)

a(3,2) a(3,3) a(3,4)

t t

tt

 An instance of S precedes
another instance of S and
S produces data that S
consumes.

 S is both source and sink.
 The dependence is loop-

i d

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -12-

S[4,2] S[4,3] S[4,4]
a(3,3) a(3,4) a(3,5)

a(4,2) a(4,3) a(4,4)

carried.
 The dependence distance

is (1,-1).

SδS t
),(or SδS t

1)(1,

4

Problem Formulation

 Consider the following perfect nest of depth d:

U ,L I do
U ,L I do

222

111

 array reference

enddo
enddo

enddo
))I(g,),I(g),I(a(g

))I(f,),I(f),I(a(f
U ,L I do

m21

m21

ddd

222

),,)I(f,a(k

subscript
position

subscript
function

or
subscript

expression

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -13-

)I,,I,(II d21

)L,,L,L(L d

21

)U,,U,U(U d21

dd22110 IbIbIbb
functionslinear

UL

Problem Formulation
 Dependence will exist if there exists two iteration vectors

and such that and:

)j()k(f

)j(g)k(f 11

UjkL

k

j

and

)j(g)k(f

)j(g)k(f

mm

22

011)j(g)k(f

 That is:

and

and

and

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -14-

0

022

)j(g)k(f

)j(g)k(f

mm

and
and

and

Problem Formulation - Example

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-1)

end do

 Does there exist two iteration vectors i1 and i2, such that
2 i1 i2 4 and such that:

i1 = i2 -1?

 Answer: yes; i1=2 & i2=3 and i1=3 & i2 =4.

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -15-

 Hence, there is dependence!

 The dependence distance vector is i2-i1 = 1.

 The dependence direction vector is sign(1) = .

Problem Formulation - Example
do i = 2, 4

S1: a(i) = b(i) + c(i)
S2: d(i) = a(i+1)

end do

 Does there exist two iteration vectors i1 and i2, such that
2 i1 i2 4 and such that:

i1 = i2 +1?

 Answer: yes; i1=3 & i2=2 and i1=4 & i2 =3. (But, but!).

 Hence, there is dependence!

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -16-

, p

 The dependence distance vector is i2-i1 = -1.

 The dependence direction vector is sign(-1) = .

 Is this possible?

5

Problem Formulation - Example

do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2: d(i) = a(2*i+1)

end do

 Does there exist two iteration vectors i1 and i2, such that
1 i1 i2 10 and such that:

2*i1 = 2*i2 +1?

 Answer: no; 2*i is even & 2*i +1 is odd

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -17-

 Answer: no; 2 i1 is even & 2 i2+1 is odd.

 Hence, there is no dependence!

Problem Formulation
 Dependence testing is equivalent to an integer linear

programming (ILP) problem of 2d variables & m+d constraint!

 An algorithm that determines if there exits two iteration
vectors and that satisfies these constraints is called a k

j

vectors and that satisfies these constraints is called a
dependence tester.

 The dependence distance vector is given by .

 The dependence direction vector is give by sign().

 Dependence testing is NP-complete!

k j

k

j

-

k

j

-

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -18-

 A dependence test that reports dependence only when there
is dependence is said to be exact. Otherwise it is in-exact.

 A dependence test must be conservative; if the existence of
dependence cannot be ascertained, dependence must be
assumed.

Dependence Testers
 Lamport’s Test.
 GCD Test.
 Banerjee’s Inequalities.
 Generalized GCD Test Generalized GCD Test.
 Power Test.
 I-Test.
 Omega Test.
 Delta Test.
 Stanford Test.
 etc

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -19-

 etc…

Lamport’s Test
 Lamport’s Test is used when there is a single index variable

in the subscript expressions, and when the coefficients of
the index variable in both expressions are the same.

)ci*bA(

 The dependence problem: does there exist i1 and i2, such
that Li i1 i2 Ui and such that

b*i1 + c1 = b*i2 + c2? or

Th i i t l ti if d l if i i t

),cib,A(1
),ci*b,A(2

?
b

ccii 21
12

cc 21

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -20-

 There is integer solution if and only if is integer.

 The dependence distance is d = if Li |d| Ui.
 d 0 true dependence.

d = 0 loop independent dependence.
d 0 anti dependence.

b
cc 21

b
cc 21

6

Lamport’s Test - Example

do i = 1, n
do j = 1, n

S: a(i,j) = a(i-1,j+1)
end do
d d

 i1 = i2 -1?

b = 1; c1 = 0; c2 = -1

end do

121

b

cc

 j1 = j2 + 1?

b = 1; c1 = 0; c2 = 1

121

b

cc

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -21-

There is dependence.

Distance (i) is 1.

There is dependence.

Distance (j) is -1.

SδS t
),(orSδS t

1)(1,

Lamport’s Test - Example

do i = 1, n
do j = 1, n

S: a(i,2*j) = a(i-1,2*j+1)
end do
d d

 i1 = i2 -1?

b = 1; c1 = 0; c2 = -1

end do

121

b

cc

 2*j1 = 2*j2 + 1?

b = 2; c1 = 0; c2 = 1

2
121

b

cc

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -22-

There is dependence.

Distance (i) is 1.

There is no dependence.

?
There is no dependence!

GCD Test
 Given the following equation:

egersintarecands'acxa ii
n

i
i

1

an integer solution exists if and only if:

 Problems:

i1

cdivides)a,,a,agcd(n21

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -23-

 Problems:
– ignores loop bounds.
– gives no information on distance or direction of dependence.
– often gcd(……) is 1 which always divides c, resulting in false

dependences.

GCD Test - Example

do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2: d(i) = a(2*i-1)

end do

 Does there exist two iteration vectors i1 and i2, such that
1 i1 i2 10 and such that:

2*i1 = 2*i2 -1?
or

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -24-

2*i2 - 2*i1 = 1?

 There will be an integer solution if and only if gcd(2,-2)
divides 1.

 This is not the case, and hence, there is no dependence!

7

GCD Test Example

do i = 1, 10
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-100)

end do

 Does there exist two iteration vectors i1 and i2, such that
1 i1 i2 10 and such that:

i1 = i2 -100?
or

i i 100?

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -25-

i2 - i1 = 100?

 There will be an integer solution if and only if gcd(1,-1) divides
100.

 This is the case, and hence, there is dependence! Or is there?

Dependence Testing Complications
 Unknown loop bounds.

do i = 1, N
S1: a(i) = a(i+10)

end do

What is the relationship between N and 10?

 Triangular loops.

do i = 1, N
do j = 1, i-1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -26-

Must impose j i as an additional constraint.

S: a(i,j) = a(j,i)
end do

end do

More Complications
 User variables.

do i = 1, 10
S1: a(i) = a(i+k)

end do

Same problem as unknown loop bounds, but occur due to
some loop transformations (e.g., normalization).

do i = L, H
S1: a(i) = a(i-1)

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -27-

do i = 1, H-L
S1: a(i+L) = a(i+L-1)

end do

More Complications
 Scalars.

do i = 1, N
S1: x = a(i)
S2: b(i) = x

do i = 1, N
S1: x(i) = a(i)
S2: b(i) = x(i)

2 ()
end do

2 () ()
end do

j = N-1
do i = 1, N

S1: a(i) = a(j)
S2: j = j - 1

end do

do i = 1, N
S1: a(i) = a(N-i)

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -28-

sum = 0
do i = 1, N

S1: sum = sum + a(i)
end do

do i = 1, N
S1: sum(i) = a(i)

end do
sum += sum(i) i = 1, N

8

Serious Complications
 Aliases.

– Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

– Common blocks: Fortran’s way of having shared/global variables.

common /shared/a,b,c
:

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -29-

:

subroutine foo (…)
common /shared/a,b,c

common /shared/x,y,z

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -30-

c(i, j) = …
… = c(i-1, j)

end do
end do

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

t
,δ

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -31-

c(i, j) = …
… = c(i-1, j)

end do
end do

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

t
,δ

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -32-

c(i, j) = …
… = c(i-1, j)

end do
end do

9

Loop Parallelization

d i 2 1

 A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -33-

c(i, j) = …
… = c(i-1, j)

end do
end do

t
,δ

Loop Parallelization
 A dependence is said to be carried by a loop if the loop is

the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-
independent.

d i 2 1do i = 2, n-1
do j = 2, m-1

a(i, j) = …
... = a(i, j)

b(i, j) = …
… = b(i, j-1)

t
,δ

t
,δ

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -34-

 Outermost loop with a non “=“ direction carries dependence!

c(i, j) = …
… = c(i-1, j)

end do
end do

t
,δ

Loop Parallelization

The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -35-

Loop Parallelization - Example

do i = 2, n-1
do j = 2 m-1

fork
i=2

i=3 i=n-2

i=n-1

do j = 2, m 1
b(i, j) = …
… = b(i, j-1)

end do
end do

t
,δ

join

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -36-

 Iterations of loop j must be executed sequentially, but the
iterations of loop i may be executed in parallel.

 Outer loop parallelism.

10

Loop Parallelization - Example

do i = 2, n-1
do j = 2 m-1

fork
j=2

j=3 j=m-2

j=m-1

do j = 2, m 1
b(i, j) = …
… = b(i-1, j)

end do
end do

t
,δ

join

i=i+1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -37-

 Iterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel.

 Inner loop parallelism.

Loop Parallelization - Example

do i = 2, n-1
do j = 2 m-1

fork
j=2

j=3 j=m-2

j=m-1

do j = 2, m 1
b(i, j) = …

… = b(i-1, j-1)
end do

end do

t
,δ

join

i=i+1

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -38-

 Iterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel. Why?

 Inner loop parallelism.

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

do j = 1, n
do i = 1, n

... a(i,j) ...
end do

end do

j

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -39-

M

C

P

i

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

do j = 1, n
do i = 1, n

... a(i,j) ...
end do

end do

do i = 1, n
do j = 1, n

… a(i,j) ...
end do

end do

i

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -40-

j
M

C

P

11

Loop Interchange
 Loop interchange can improve the granularity of parallelism!

do i = 1, n
do j = 1, n

a(i,j) = b(i,j)
c(i,j) = a(i-1,j)

end do
end do

do j = 1, n
do i = 1, n

a(i,j) = b(i,j)
c(i,j) = a(i-1,j)

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -41-

t
,δ

t
,δ

Loop Interchange

j

i
tδ

tδ
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ

t
,δ

t
,δ

t
,δ

t
,δ

,δ ,
t
,δ

t
,δ

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -42-

 When is loop interchange legal?

Loop Interchange

j

i
tδ

tδ
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ

t
,δ

t
,δ

,δ ,

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -43-

 When is loop interchange legal?

Loop Interchange

j

i
tδ

tδ
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ

t
,δ

t
,δ

,δ ,

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -44-

 When is loop interchange legal?

12

Loop Interchange

j

i
tδ

tδ
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

do j = 1,n
do i = 1,n

… a(i,j) …
end do

end do

i

t
,δ

t
,δ

t
,δ

,δ ,

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -45-

 When is loop interchange legal? when the “interchanged”
dependences remain lexiographically positive!

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do t = 1,T
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -46-

end do

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B control loopsdo ic = 1, n, B
do jc = 1, n , B

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -47-

end do
end do

end do B: Block size

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B
jc =1control loopsdo ic = 1, n, B

do jc = 1, n , B
do t = 1,T

do i = 1,B
do j = 1,B

… a(ic+i-1,jc+j-1) …
end do

end do
end do

ic =1

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -48-

end do
end do

end do B: Block size

13

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B
jc =2control loopsdo ic = 1, n, B

do jc = 1, n , B
do t = 1,T

do i = 1,B
do j = 1,B

… a(ic+i-1,jc+j-1) …
end do

end do
end do

ic =1

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -49-

end do
end do

end do B: Block size

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B control loopsdo ic = 1, n, B
do jc = 1, n , B

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do
ic =2

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -50-

end do
end do

end do

jc =1

B: Block size

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1 n B control loopsdo ic = 1, n, B
do jc = 1, n , B

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do
ic =2

p

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -51-

end do
end do

end do

jc =2

B: Block size

Loop Blocking (Tiling)

do t = 1 T
do t = 1,T
do ic = 1 n B

do ic = 1, n, B
do jc = 1, n , B

do t = 1 Tdo t = 1,T
do i = 1,n

do j = 1,n
… a(i,j) …

end do
end do

end do

do ic = 1, n, B
do i = 1,B
do jc = 1, n, B
do j = 1,B

… a(ic+i-1,jc+j-1) …
end do

end do
end do

do t = 1,T
do i = 1,B

do j = 1,B
… a(ic+i-1,jc+j-1) …

end do
end do

end do
end do

end do

Todd C. Mowry

Carnegie Mellon
Optimizing Compilers: Parallelization -52-

 When is loop blocking legal?

