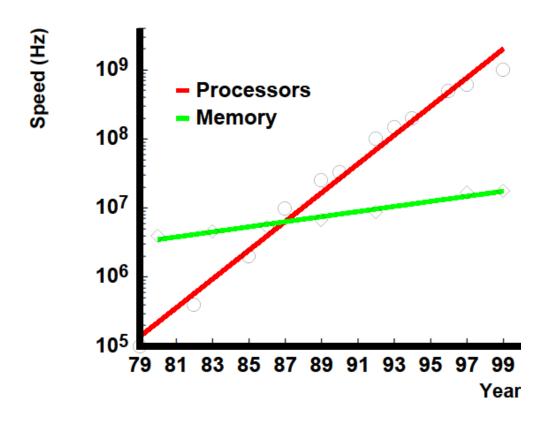
Lectures 26-27

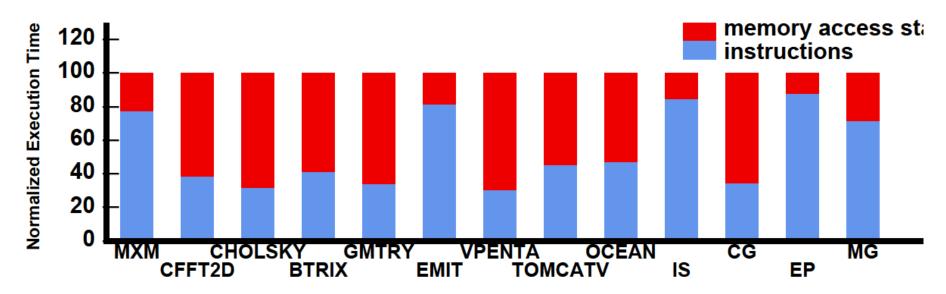
Compiler Algorithms for Prefetching Data

- I. Prefetching for Arrays
- II. Prefetching for Recursive Data Structures


Reading: ALSU 11.11.4

Advanced readings (optional):

- T.C. Mowry, M. S. Lam and A. Gupta. "Design and Evaluation of a Compiler Algorithm for Prefetching." In Proceedings of ASPLOS-V, Oct. 1992, pp. 62-73.
- C.-K. Luk and T. C. Mowry. "Compiler-Based Prefetching for Recursive Data Structures." In Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233.


Carnegie Mellon

The Memory Latency Problem

- ↑ processor speed >> ↑ memory speed
- caches are not a panacea

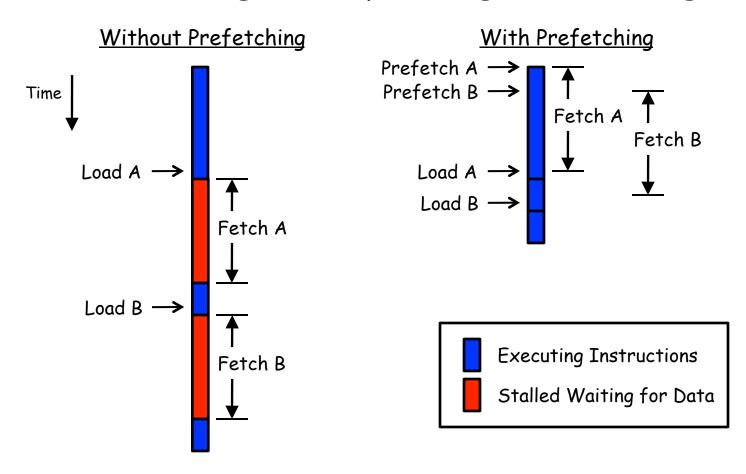
Uniprocessor Cache Performance on Scientific Code

- Applications from SPEC, SPLASH, and NAS Parallel.
- Memory subsystem typical of MIPS R4000 (100 MHz):
 - 8K / 256K direct-mapped caches, 32 byte lines
 - miss penalties: 12 / 75 cycles
- 8 of 13 spend > 50% of time stalled for memory

Prefetching for Arrays: Overview

- Tolerating Memory Latency
- Prefetching Compiler Algorithm and Results
- Implications of These Results

Coping with Memory Latency


Reduce Latency:

- Locality Optimizations
 - reorder iterations to improve cache reuse

Tolerate Latency:

- Prefetching
 - move data close to the processor before it is needed

Tolerating Latency Through Prefetching

overlap memory accesses with computation and other accesses

Types of Prefetching

Cache Blocks:

(-) limited to unit-stride accesses

Nonblocking Loads:

(-) limited ability to move back before use

Hardware-Controlled Prefetching:

- (-) limited to constant-strides and by branch prediction
- (+) no instruction overhead

<u>Software-Controlled Prefetching:</u>

- (-) software sophistication and overhead
- (+) minimal hardware support and broader coverage

Prefetching Research Goals

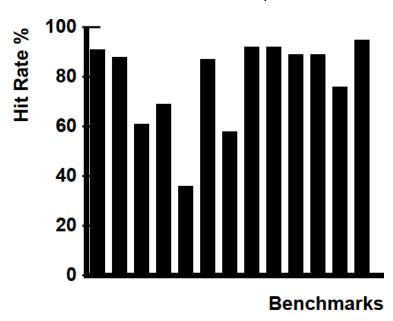
- Domain of Applicability
- Performance Improvement
 - maximize benefit
 - minimize overhead

Prefetching Concepts

possible only if addresses can be determined ahead of time coverage factor = fraction of misses that are prefetched unnecessary if data is already in the cache effective if data is in the cache when later referenced

Analysis: what to prefetch

- maximize coverage factor
- minimize unnecessary prefetches


<u>Scheduling</u>: when/how to schedule prefetches

- maximize effectiveness
- minimize overhead per prefetch

Reducing Prefetching Overhead

- instructions to issue prefetches
- extra demands on memory system

Hit Rates for Array Accesses

• important to minimize unnecessary prefetches

Compiler Algorithm

Analysis: what to prefetch

Locality Analysis

Scheduling: when/how to issue prefetches

- Loop Splitting
- Software Pipelining

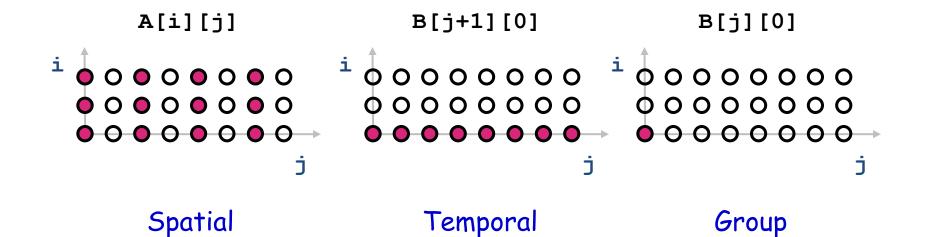
Steps in Locality Analysis

1. Find data reuse

- if caches were infinitely large, we would be finished

2. Determine "localized iteration space"

 set of inner loops where the data accessed by an iteration is expected to fit within the cache


3. Find data locality:

- reuse \cap localized iteration space \Rightarrow locality

Data Locality Example

```
for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];
```


Reuse Analysis: Representation

Map n loop indices into d array indices via array indexing function:

$$\vec{f}(\vec{i}) = H\vec{i} + \vec{c}$$

$$A[i][j] = A\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right)$$

$$B[j][0] = B\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right)$$

$$B[j+1][0] = B\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

Finding Temporal Reuse

• Temporal reuse occurs between iterations $\vec{\imath}1$ and $\vec{\imath}2$ whenever:

$$H\vec{\imath}_1 + \vec{c} = H\vec{\imath}_2 + \vec{c}$$

 $H(\vec{\imath}_1 - \vec{\imath}_2) = \vec{0}$

• Rather than worrying about individual values of $\vec{\imath}1$ and $\vec{\imath}2$, we say that reuse occurs along direction vector \vec{r} when:

$$H(\vec{r}) = \vec{0}$$

Solution: compute the nullspace of H

Temporal Reuse Example

Reuse between iterations (i₁,j₁) and (i₂,j₂) whenever:

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ j_1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_2 \\ j_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 - i_2 \\ j_1 - j_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- True whenever $j_1 = j_2$, and regardless of the difference between i_1 and i_2 .
 - i.e. whenever the difference lies along the nullspace of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, which is span{(1,0)} (i.e. the outer loop).

Localized Iteration Space

Given finite cache, when does reuse result in locality?

```
for i = 0 to 2
for j = 0 to 10000000
A[i][j] = B[j][0] + B[j+1][0];

B[j+1][0]

Localized: j loop only
    (i.e. span{(0,1)})
```

Localized if accesses less data than effective cache size

Carnegie Mellon

Computing Locality

Reuse Vector Space ∩ Localized Vector Space ⇒ Locality Vector Space

```
    Example: for i = 0 to 2
        for j = 0 to 100
        A[i][j] = B[j][0] + B[j+1][0];
```

- If both loops are localized:
 - span{(1,0)} \cap span{(1,0),(0,1)} \Rightarrow span{(1,0)}
 - i.e. temporal reuse does result in temporal locality
- If only the innermost loop is localized:
 - span $\{(1,0)\}$ ∩ span $\{(0,1)\}$ ⇒ span $\{\}$
 - i.e. no temporal locality

Prefetch Predicate

Locality Type	Miss Instance	Predicate
None	Every Iteration	True
Temporal	First Iteration	i = 0
Spatial	Every l iterations (l = cache line size)	(i mod l) = 0

Example: for i = 0 to 2 for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

Reference	Locality	Predicate
A[i][j]	[i] = [none spatial]	(j mod 2) = 0
B[j+1][0]	[i] = [temporal] none	i = 0

Compiler Algorithm

Analysis: what to prefetch

Locality Analysis

Scheduling: when/how to issue prefetches

- Loop Splitting
- Software Pipelining

Loop Splitting

- Decompose loops to isolate cache miss instances
 - cheaper than inserting IF statements

Locality Type	Predicate	Loop Transformation
None	True	None
Temporal	i = 0	Peel loop i
Spatial	(i mod l) = 0	Unroll loop i by l

- Apply transformations recursively for nested loops
- Suppress transformations when loops become too large
 - avoid code explosion

Software Pipelining

Iterations Ahead =
$$\left\lceil \frac{1}{5} \right\rceil$$

where /= memory latency, s = shortest path through loop body

Original Loop

```
a[i] = 0;
```

```
Software Pipelined Loop
  (5 iterations ahead)
```

```
/* Prolog */
for (i = 0; i<100; i++) for (i = 0; i<5; i++)
                              prefetch(&a[i]);
                           for (i = 0; i<95; i++) { /* Steady State*/
                              prefetch(&a[i+5]);
                              a[i] = 0;
                           for (i = 95; i<100; i++) /* Epilog */
                              a[i] = 0;
```

Carnegie Mellon

Example Revisited

Original Code

for (i = 0; i < 3; i++) for (j = 0; j < 100; j++) A[i][j] = B[j][0] + B[j+1][0];</pre>

O Cache Hit

O Cache Miss

```
A[i][j]

i 0 0 0 0 0 0 0

0 0 0 0 0 0 0

j
```

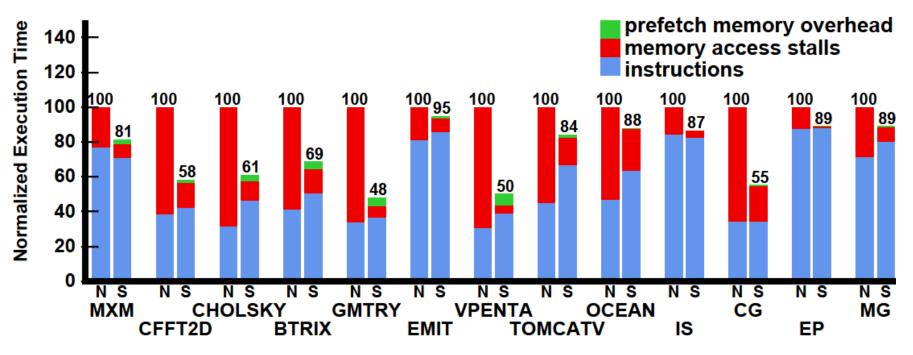
Code with Prefetching

```
prefetch(&A[0][0]);
               for (j = 0; j < 6; j += 2) {
                 prefetch(&B[j+1][0]);
                 prefetch(&B[j+2][0]);
                 prefetch(&A[0][j+1]);
               for (j = 0; j < 94; j += 2) {
                 prefetch(&B[j+7][0]);
i = 0
                 prefetch(&B[j+8][0]);
                 prefetch(&A[0][j+7]);
                 A[0][j] = B[j][0]+B[j+1][0];
                 A[0][j+1] = B[j+1][0]+B[j+2][0];
               for (j = 94; j < 100; j += 2) {
                 A[0][j] = B[j][0]+B[j+1][0];
                 A[0][j+1] = B[j+1][0]+B[j+2][0];
               for (i = 1; i < 3; i++) {
                 prefetch(&A[i][0]);
                 for (j = 0; j < 6; j += 2)
                   prefetch(&A[i][j+1]);
                 for (j = 0; j < 94; j += 2) {
                   prefetch(&A[i][j+7]);
                   A[i][j] = B[j][0] + B[j+1][0];
i > 0
                   A[i][j+1] = B[j+1][0] + B[j+2][0];
                 for (j = 94; j < 100; j += 2) {
                   A[i][j] = B[j][0] + B[j+1][0];
                   A[i][j+1] = B[j+1][0] + B[j+2][0];
```

Experimental Framework (Uniprocessor)

Architectural Extensions:

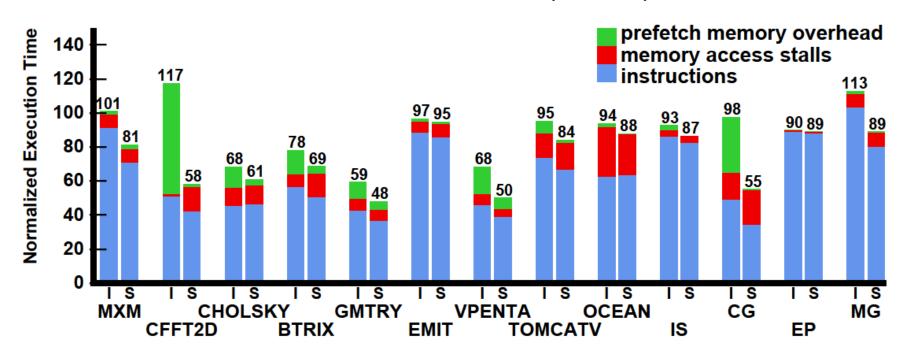
- Prefetching support:
 - lockup-free caches
 - 16-entry prefetch issue buffer
 - · prefetch directly into both levels of cache
- Contention:
 - memory pipelining rate = 1 access every 20 cycles
 - primary cache tag fill = 4 cycles
- Misses get priority over prefetches


Simulator:

- detailed cache simulator driven by pixified object code.

Experimental Results (Dense Matrix Uniprocessor)

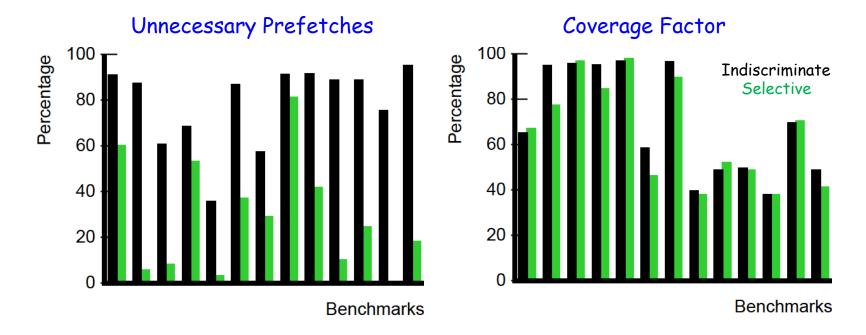
- Performance of Prefetching Algorithm
 - Locality Analysis
 - Software Pipelining
- Interaction with Locality Optimizer


Performance of Prefetching Algorithm

(N = No Prefetching, S = Selective Prefetching)

- memory stalls reduced by 50% to 90%
- instruction and memory overheads typically low
- 6 of 13 have speedups over 45%

Effectiveness of Locality Analysis

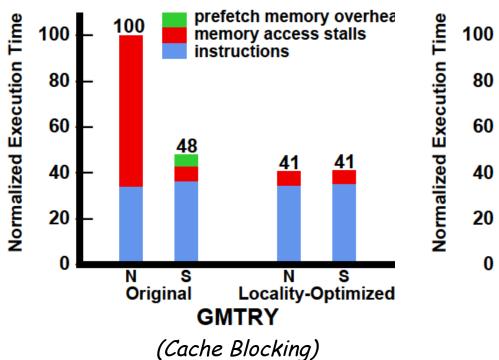


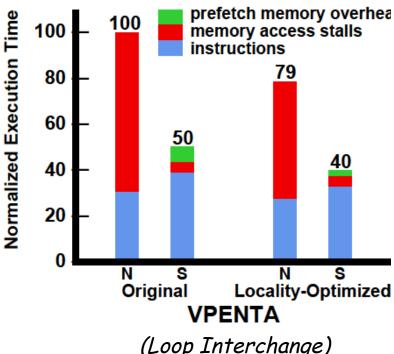
(I = Indiscriminate Prefetching, S = Selective Prefetching)

Selective vs. Indiscriminate prefetching:

- similar reduction in memory stalls
- significantly less overhead
- 6 of 13 have speedups over 20%

Effectiveness of Locality Analysis (Continued)


- fewer unnecessary prefetches
- comparable coverage factor
- reduction in prefetches ranges from 1.5 to 21 (average = 6)


Effectiveness of Software Pipelining

- Large pf-miss → ineffective scheduling
 - conflicts replace prefetched data (CHOLSKY, TOMCATV)
 - prefetched data still found in secondary cache

Interaction with Locality Optimizer

- locality optimizations reduce number of cache misses
- prefetching hides any remaining latency
- best performance through a combination of both

Prefetching Indirections

```
for (i = 0; i<100; i++)
sum += A[index[i]];</pre>
```

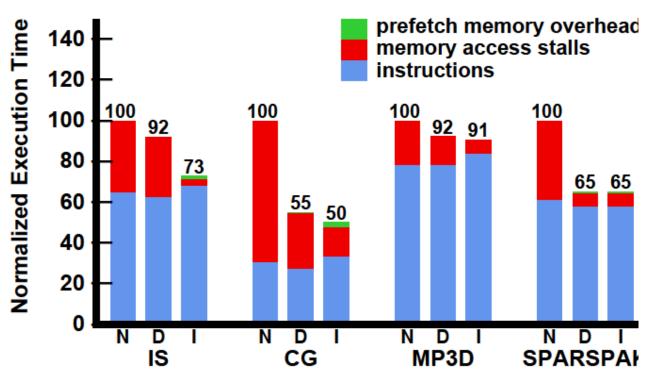
Analysis: what to prefetch

- both dense and indirect references
- difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches

modification of software pipelining algorithm

Software Pipelining for Indirections


Original Loop

```
for (i = 0; i<100; i++)
sum += A[index[i]];
```

Software Pipelined Loop (5 iterations ahead)

```
/* Prolog 1 */
for (i = 0; i < 5; i++)
   prefetch(&index[i]);
                           /* Prolog 2 */
for (i = 0; i < 5; i++) {
   prefetch(&index[i+5]);
   prefetch(&A[index[i]]);
for (i = 0; i < 90; i++) { /* Steady State*/}
   prefetch(&index[i+10]);
   prefetch(&A[index[i+5]]);
   sum += A[index[i]];
for (i = 90; i < 95; i++) { /* Epilog 1 */}
   prefetch(&A[index[i+5]]);
   sum += A[index[i]];
for (i = 95; i<100; i++) /* Epilog 2 */
   sum += A[index[i]];
```

Indirection Prefetching Results

(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)

- larger overheads in computing indirection addresses
- significant overall improvements for IS and CG

Summary of Results

Dense Matrix Code:

- eliminated 50% to 90% of memory stall time
- overheads remain low due to prefetching selectively
- significant improvements in overall performance (6 over 45%)

Indirections, Sparse Matrix Code:

expanded coverage to handle some important cases

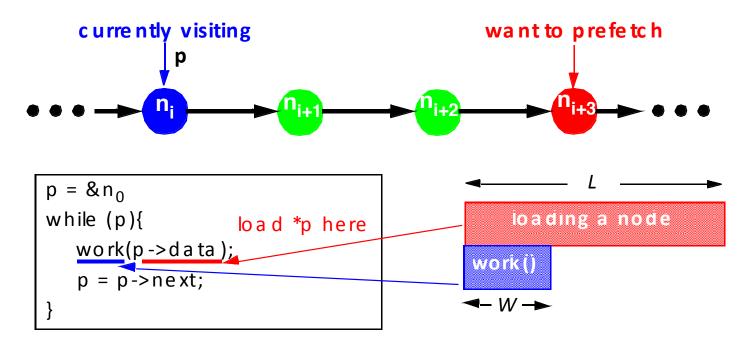
Prefetching for Arrays: Concluding Remarks

- Demonstrated that software prefetching is effective
 - selective prefetching to eliminate overhead
 - dense matrices and indirections / sparse matrices
 - uniprocessors and multiprocessors
- Hardware should focus on providing sufficient memory bandwidth

Part II: Prefetching for Recursive Data Structures

Recursive Data Structures

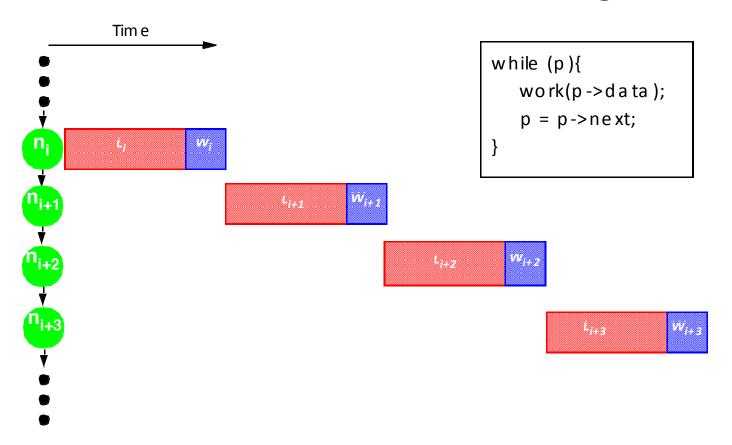
- Examples:
 - linked lists, trees, graphs, ...
- A common method of building large data structures
 - especially in non-numeric programs
- Cache miss behavior is a concern because:
 - large data set with respect to the cache size
 - temporal locality may be poor
 - little spatial locality among consecutively-accessed nodes


Goal:

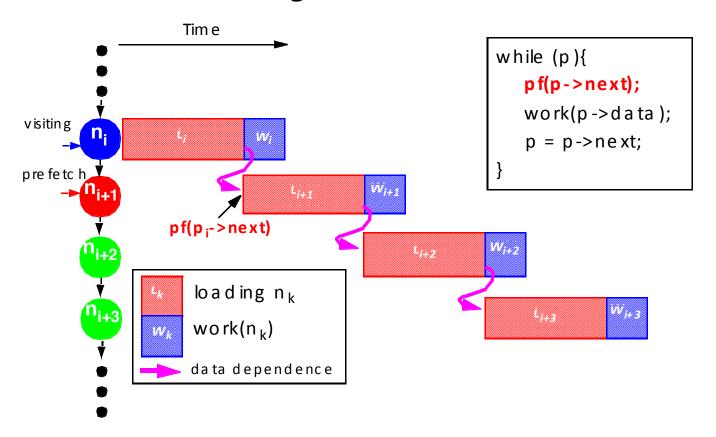
Automatic Compiler-Based Prefetching for Recursive Data Structures

<u>Overview</u>

- Challenges in Prefetching Recursive Data Structures
- Three Prefetching Algorithms
- Experimental Results
- Conclusions

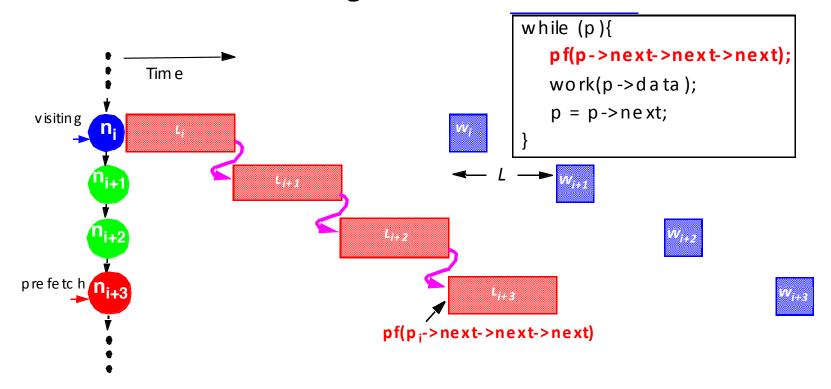

Scheduling Prefetches for Recursive Data Structures

Our Goal: fully hide latency


- thus achieving fastest possible computation rate of 1/W
- e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

Performance without Prefetching

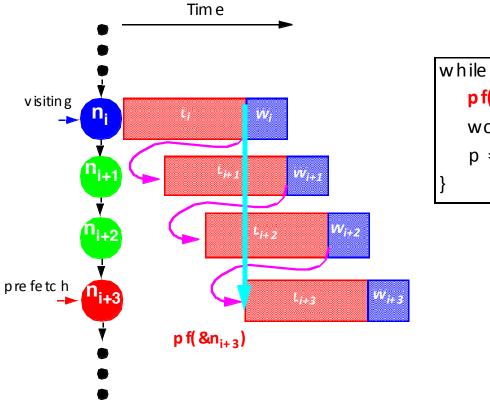
computation rate = 1/(L+W)


Prefetching One Node Ahead

Computation is overlapped with memory accesses

computation rate = 1/L

Prefetching Three Nodes Ahead



computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

any scheme which follows the pointer chain is limited to a rate of 1/L

Our Goal: Fully Hide Latency


```
while (p){
    pf(&n<sub>i+3</sub>);
    work(p->data);
    p = p->next;
}
```

achieves the fastest possible computation rate of 1/W

Overview

- Challenges in Prefetching Recursive Data Structures
- Three Prefetching Algorithms
 - Greedy Prefetching
 - History-Pointer Prefetching
 - Data-Linearization Prefetching
- Experimental Results
- Conclusions

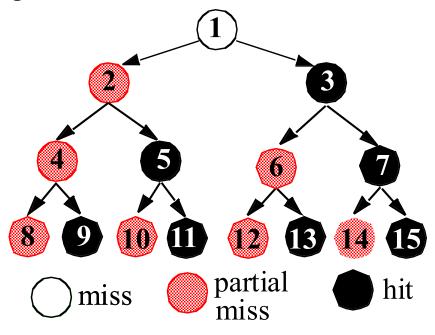

Overcoming the Pointer-Chasing Problem

Key:

n_i needs to know &n_{i+d} without referencing the d-1 intermediate nodes

Our proposals:

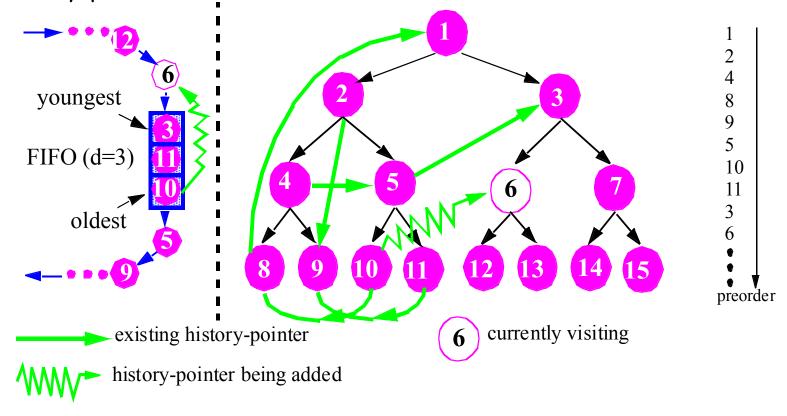
- use existing pointer(s) in n_i to approximate &n_{i+d}
 - Greedy Prefetching
- add new pointer(s) to n_i to approximate &n_{i+d}
 - History-Pointer Prefetching
- compute &n_{i+d} directly from &n_i (no ptr deref)
 - History-Pointer Prefetching



A=Addressgenerating function

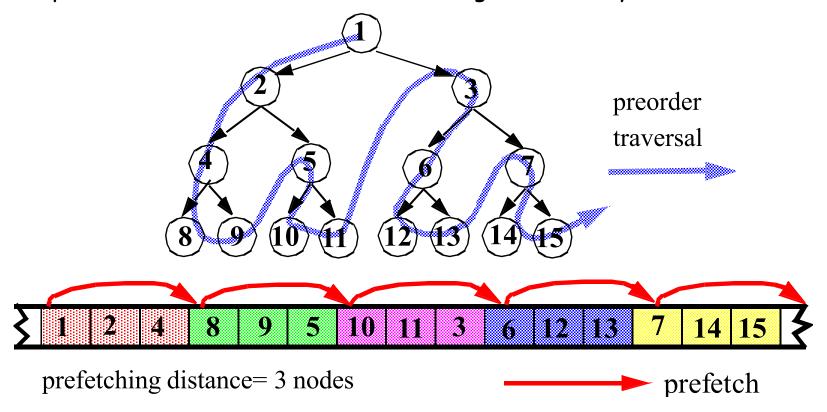
Greedy Prefetching

- Prefetch all neighboring nodes (simplified definition)
 - only one will be followed by the immediate control flow
 - hopefully, we will visit other neighbors later


```
preorder(treeNode * t) {
  if (t != NULL) {
    pf(t->left);
    pf(t->right);
    process(t->data);
    preorder(t->left);
    preorder(t->right);
}
```


- Reasonably effective in practice
- However, little control over the prefetching distance

History-Pointer Prefetching


- Add new pointer(s) to each node
 - history-pointers are obtained from some recent traversal

Trade space & time for better control over prefetching distances

<u>Data-Linearization Prefetching</u>

- No pointer dereferences are required
- Map nodes close in the traversal to contiguous memory

Summary of Prefetching Algorithms

	Greedy	History-Pointer	Data-Linearization
Control over Prefetching Distance	little	more precise	more precise
Applicability to Recursive Data Structures	any RDS	revisited; changes only slowly	must have a major traversal order; changes only slowly
Overhead in Preparing Prefetch Addresses	none	space + time	none in practice
Ease of Implementation	relatively straightforward	more difficult	more difficulty

- Greedy prefetching is the most widely applicable algorithm
 - fully implemented in SUIF

<u>Overview</u>

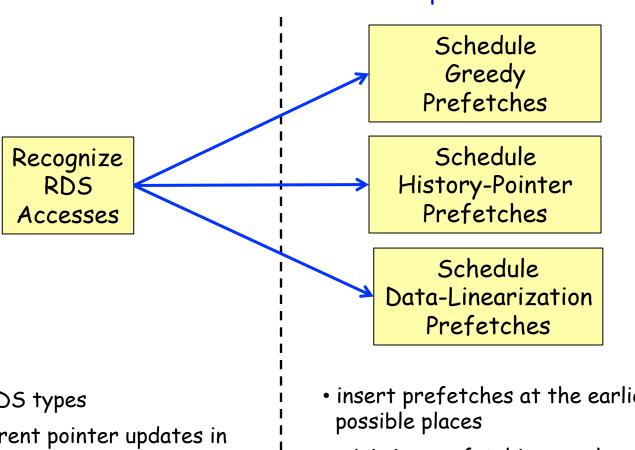
- Challenges in Prefetching Recursive Data Structures
- Three Prefetching Algorithms
- Experimental Results
- Conclusions

Experimental Framework

Benchmarks

- Olden benchmark suite
 - 10 pointer-intensive programs
 - covers a wide range of recursive data structures

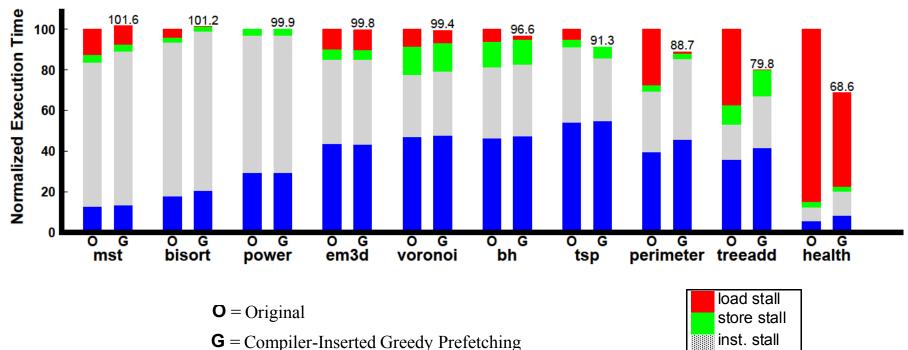
Simulation Model

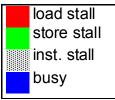

- Detailed, cycle-by-cycle simulations
- MIPS R10000-like dynamically-scheduled superscalar

Compiler

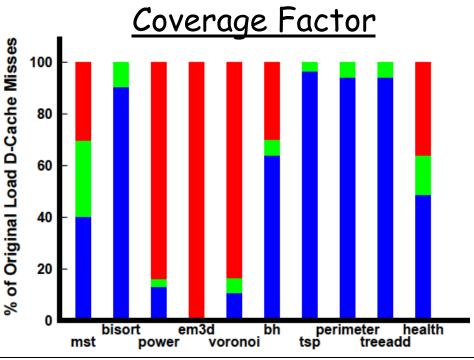
- Implemented in the SUIF compiler
- Generates fully functional, optimized MIPS binaries

Implementation of Our Prefetching Algorithms

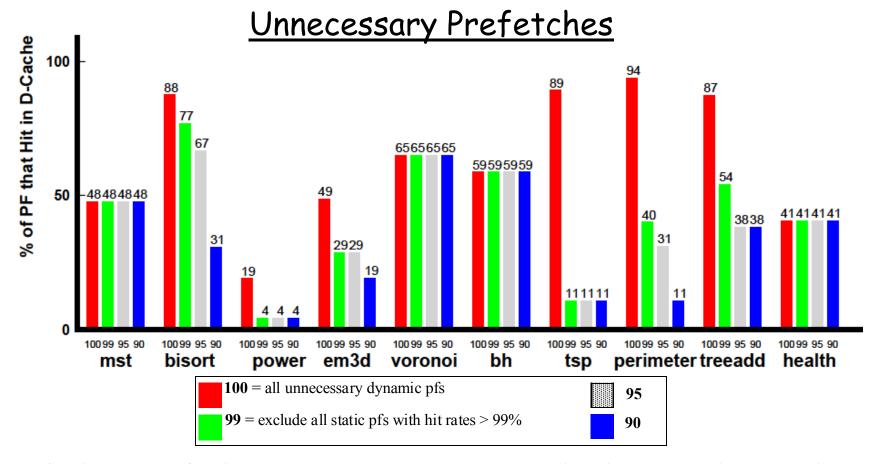

Automated in the SUIF compiler



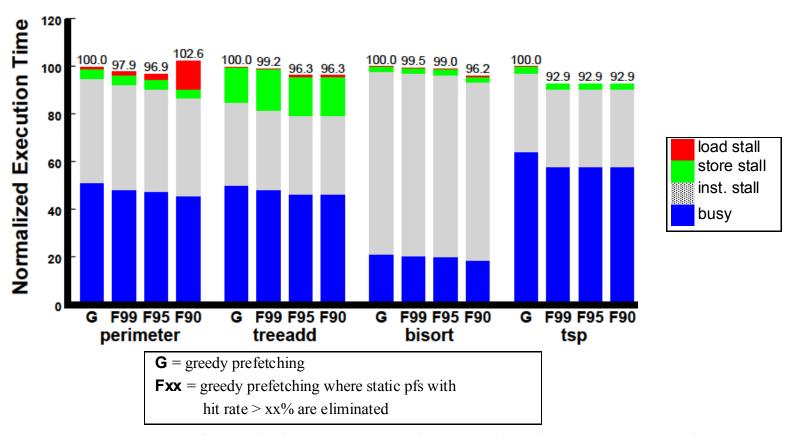
- identify RDS types
- find recurrent pointer updates in loops and recursive procedures


- insert prefetches at the earliest
- minimize prefetching overhead

Performance of Compiler-Inserted Greedy Prefetching

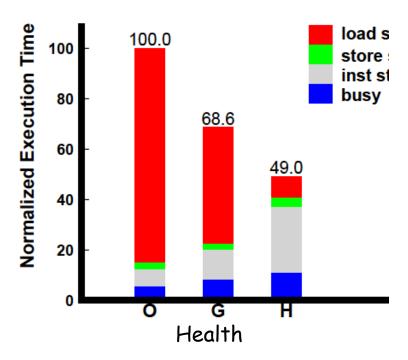


- Eliminates much of the stall time in programs with large load stall penalties
 - half achieve speedups of 4% to 45%



- nopf_miss = original D-cache misses that are not prefetched pf_miss = original D-cache misses that are prefetched but remain misses pf_hit = original D-cache misses that are prefetched and then hit in the D-cache
- coverage factor = pf_hit + pf_miss
- 7 out of 10 have coverage factors > 60%
 - em3d, power, voronoi have many array or scalar load misses
- small pf_miss fractions → effective prefetch scheduling

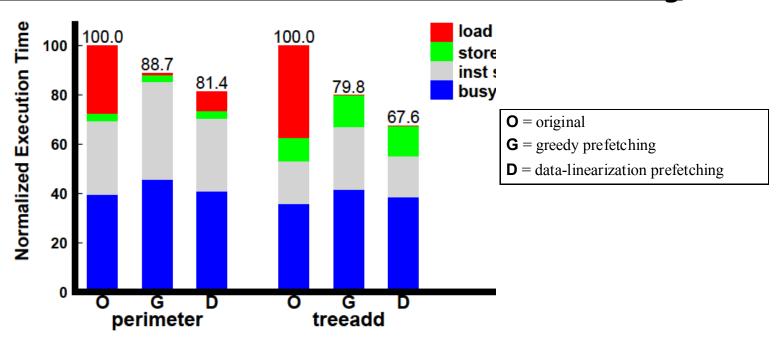
- % dynamic pfs that are unnecessary because the data is in the D-cache
- 4 have >80% unnecessary prefetches
- Could reduce overhead by eliminating static pfs that have high hit rates


Reducing Overhead Through Memory Feedback

- Eliminating static pfs with hit rate >95% speeds them up by 1-8%
- However, eliminating useful prefetches can hurt performance
- Memory feedback can potentially improve performance

Carnegie Mellon

Performance of History-Pointer Prefetching


 $\mathbf{O} = \text{original}$

G = greedy prefetching

H = history-pointer prefetching

- Applicable because a list structure does not change over time
- 40% speedup over greedy prefetching through:
 - better miss coverage (64% -> 100%)
 - fewer unnecessary prefetches (41% -> 29%)
- Improved accuracy outweighs increased overhead in this case

Performance of Data-Linearization Prefetching

- Creation order equals major traversal order in treeadd & perimeter
 - hence data linearization is done without data restructuring
- 9% and 18% speedups over greedy prefetching through:
 - fewer unnecessary prefetches:
 - 94%->78% in perimeter, 87%->81% in treeadd
 - while maintaining good coverage factors:
 - 100%->80% in perimeter, 100%->93% in treeadd

Carnegie Mellon

Conclusions

- Propose 3 schemes to overcome the pointer-chasing problem:
 - Greedy Prefetching
 - History-Pointer Prefetching
 - Data-Linearization Prefetching
- Automated greedy prefetching in SUIF
 - improves performance significantly for half of Olden
 - memory feedback can further reduce prefetch overhead
- The other 2 schemes can outperform greedy in some situations