Lecture 25
Memory Hierarchy Optimizations &
Locality Analysis

CS745: Memory Hierarchy Optimizations Todd C. Mowry

Caches: A Quick Review

* How do they work?
* Why do we care about them?
« What are typical configurations today?

« What are some important cache parameters that will affect
performance?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -2- Todd C. Mowry

Optimizing Cache Performance

« Things to enhance:
- temporal locality
- spatial locality

« Things to minimize:
- conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -3- Todd C. Mowry

Two Things We Can Manipulate

* Time:
When is an object accessed?

* Space:
Where does an object exist in the address space?

How do we exploit these two levers?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -4- Todd C. Mowry

Time: Reordering Computation

« What makes it difficult to know when an object is accessed?

* How can we predict a better time to access it?
* What information is needed?

« How do we know that this would be safe?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -B- Todd C. Mowry

Space: Changing Data Layout

* What do we know about an object's location?

* scalars, structures, pointer-based data structures, arrays,
code, etc.

« How can we tell what a better layout would be?
* how many can we create?

« To what extent can we safely alter the layout?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -6- Todd C. Mowry

Types of Objects to Consider

e Scalars
 Structures & Pointers
* Arrays

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -7- Todd C. Mowry

Scalars
« Locals int x;
double y;
foo(int a
. Globals > (int a)
int 1;
* Procedure arguments X = aki:
« Is cache performance a concern here? }

« If so, what can be done?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -8- Todd C. Mowry

Structures and Pointers

struct {

« What can we do here? int count;
. within a node double velocity;

double i tia;
- across nodes cubre inertia

struct node *neighbors|[N];
} node;

* What limits the compiler's ability fo optimize here?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -9- Todd C. Mowry

Arrays

double A[N][N], B[N][N];

for i = 0 to N-1
for j = 0 to N-1
A[i] []J] = B[]J1I[1]~

» usually accessed within loops nests
* makes it easy to understand "time"

« what we know about array element addresses:
- start of array?
» relative position within array

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -10- Todd C. Mowry

Handy Representation: "Tteration Space”

for 1 = 0 to N-1
for j = 0 to N-1
A[i][3] = B[]J]1I[1i]:;

OO0OO0O0O0O0O0
O0O00O0O0
O0O00O0O0
O0O00O0O0
O0O00O0O0
O0O00O0O0
O0O00O0O0
O0O00O0O0
O0O00O0O0

O0O0000O0O0
OO0O0000O0O0O0
OO0O0000O0O0O0
OO0OO0O0O00O0O0O0O0O0

OO0OO0O0OO0OO0O0O00O0
O0O0O00O000O0O0
O0O0O00O000O0O0

 each position represents an iteration

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -11- Todd C. Mowry

Visitation Order in Tteration Space

for 1 = 0 to N-1 ‘ ‘
for § = 0 to N-1 G666 06O
A[i][3] = BI[31I[1i]:; G-8-0-0 0660050090

* Note: iteration space = data space

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -12- Todd C. Mowry

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i][3] = B[3j1I[i];
A B
TO0000000O0 TO0000000O0
O0O0O000O0O0 O0O0O000O0O0
O00O000O0O0 O00O000O0O0
O0O0O000O0O0 O0O0O000O0O0
O0O0O000O0O0 O0O0O000O0O0
O00O000O0O0 O00O000O0O0
O0O0O000O0O0 O0O0O000O0O0
OO0O0O0000O0 OO0O0O0000O0

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -13- Todd C. Mowry

When Do Cache Misses Occur?

for i = 0 to N-1 O0000000O0

for j = 0 to N-1 gggggggg
. e

ALA+III0T =273 00000000

00000000

00000000

00000000

00000000

CS745: Memory Hierarchy Optimizations -14- Todd C. Mowry

Optimizing the Cache Behavior of Array Accesses

« We need to answer the following questions:
when do cache misses occur?
- use "locality analysis”

can we change the order of the iterations (or possibly data
layout) to produce better behavior?

- evaluate the cost of various alternatives
does the new ordering/layout still produce correct results?
» use "dependence analysis"

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -15- Todd C. Mowry

Examples of Loop Transformations

* Loop Interchange
« Cache Blocking

« Skewing

« Loop Reversal

(we will briefly discuss the first two)

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -16- Todd C. Mowry

Loop Interchange

fori=0toN—1><f:>rj=0toN—1
for j = 0 to N-1 for i = 0 to N-1
A[J1[i] = i*3; A[j1[i] = i*j;
90000000 JOO@O0O@00O O Hit
Q0000000 Q0000000 @ Miss
Q0000000 -» Q0000000
Q0000000 Q0000000
Q0000000 Q0000000
Q0000000 Q0000000
Q0000000 Q0000000
00000000 Q0000000
. i

« (assuming N is large relative to cache size)

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -17- Todd C. Mowry

Cache Blocking (aka "Tiling")

— for JJ = 0 to N-1 by B

for i = 0 to N-1 for i = 0 to N-1
for j = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)
£(A[1] ,A[3]) £f(a[1i],A[]]);

Ali] Al7] Ali] Al7]
i00000000 1000000O0O0 i00000000 1000000O0O0
00000000 00000000 000000O0O0 000000O0O0
00000000 00000000 000000O0O0 000000O0O0
00000000 00000000 000000O0O0 000000O0O0
00000000 00000000 000000O0O0 000000O0O0
00000000 00000000 000000O0O0 000000O0O0
00000000 00000000 000000O0O0 000000O0O0
00000000 00000000 00000000 00000000

J J]

now we can exploit temporal locality

CS745: Memory Hierarchy Optimizations -18-

.

Carnegie Mellon

Todd C. Mowry

IS

itation Order in Tteration Space

Impact on V

—> for JJ = 0 to N-1 by B

= 0 to N-1
for j = JJ to max(N-1,JJ+B-1)

for 1i

-1

=0 to N

for 1i

-1

=0 to N

for j

£(a[i],A[3]1);

Al3j]);

4

f(A[1]

W W)

o
w

r) ¢)

o
w
-——
w
-——
w

36660606
005
005
S-O-0-C0-8

o
—— <
o
—— <
N
—— <

-«

()

€
€
U=

d
d
d
J
J

-
o o

- -
- o

€
€
€
€
€
€

-
o o

Smipiaialaly

CN O
-~ o S mmm

D
o o

22—

CN O
-~ o S mmm

22RO

CN O
-~ o S mmm

-8

sy tatatate

- -
- o — e mmm

Smemd

- -
- o — e mmm

Carnegie Mellon -

Todd C. Mowry

-19-

CS745: Memory Hierarchy Optimizations

Cache Blocking in Two Dimensions

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B

for i = 0 to N-1

for 1 = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)

for j = 0 to N-1
k = KK to max(N-1,KK+B-1)

for k = 0 to N-1 for =
cl[i,k] += a[i,jl1*b[j, k]; c[i,k] += a[i,]Jl1*b[], k];

 brings square sub-blocks of matrix "b" into the cache
« completely uses them up before moving on

I, arnegie Mellon [
-20- Todd C. Mowry

CS745: Memory Hierarchy Optimizations

Predicting Cache Behavior through "Locality Analysis”

« Definitions:
Reuse:
- accessing a location that has been accessed in the past

Locality:
» accessing a location that is now found in the cache

* Key Insights
Locality only occurs when there is reusel
BUT, reuse does not necessarily result in locality.
* why not?

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -21- Todd C. Mowry

Steps in Locality Analysis

1. Find data reuse
if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

- set of inner loops where the data accessed by an iteration is
expected to fit within the cache

3. Find data locality:
reuse N localized iteration space = locality

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -22- Todd C. Mowry

Types of Data Reuse/Locality

for i = 0 to 2

for § = 0 to 100 O Hit
A[i][j] = B[3]1[0] + B[j+1][O0]; @ Miss
A[i]l[3] B[j+1][O] B[j][O0]
100000000 00000000 *00000OOCOO
0000000 00000000 OO0O00O00O0O
00000000 00000000 00000000
J J J
Spatial Temporal Group

CS745: Memory Hierarchy Optimizations -23- Todd C. Mowry

Reuse Analysis: Representation

for 1 = 0 to 2
for j = 0 to 100

A[i][j] = BI[J1[0] + B[j+1][0];

* Map nloop indices into d array indices via array indexing function:

f() =Hr+¢

A[i][j]=A<C1)(1) ;4—8)
B[j][O]=B<8(1) ;+8)
B[j+11[0] = B< Sl ; +1 =)

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -24- Todd C. Mowry

Finding Temporal Reuse

- Temporal reuse occurs between iterations 21 and 72
whenever: S S S R
Hiy+c= Hi+c

H((71 — 1n) =0

» Rather than worrying about individual values of ?1 and %2
we say that reuse occurs along direction vector when:

H(#) =0

* Solution: compute the nullspace of H

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -25- Todd C. Mowry

Temporal Reuse Example

for i = 0 to 2

for j = 0 to 100 /

A[i][j] = BI[J1[0] + B[j+1][0];

* Reuse between iTera’rifms (i1.41) ar_ld (i.j2) whenever:
o oll]+le]=[e][]+ [e]
HHiE=EH

« True whenever j; = j,, and regardless of the difference
between i; and i,,.

i.e. whenever the difference lies along the nullspace of ! o 0]
which is span{(1,0)} (i.e. the outer loop).

CS745: Memory Hierarchy Optimizations -26- Todd C. Mowry

More Complicated Example

for i = 0 to N-1
for j = 0 to N-1
A[i+3][0] = i*3;

L . 1 1 7
A[l"'J][O]—A([0 O][j

* Nullspace of [(1) (1)] = span{(1,-1)}.

CS745: Memory Hierarchy Optimizations

_27-

O Hit
@ Miss

Carnegie Mellon -

Todd C. Mowry

Computing Spatial Reuse

* Replace last row of Hwith zeros, creating H,
 Find the nullspace of H.

 Result: vector along which we access the same row

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -28- Todd C. Mowry

Computing Spatial Reuse: Example

fofri.=—0t02 i‘O'O'0.0 —
or:.j—0t0100 00000000 |
A[i]l[3j]1 = B[3jl1I[0] + B[j+1]1[O0]; 00000000 @ Miss
J
a1 1 O) 0
i = ((32][1]+[3)
_[10
Ao (o o]

* Nullspace of H. = span{(0,1)}
* i.e. access same row of A[i] [j] along inner loop

CS745: Memory Hierarchy Optimizations -29- Todd C. Mowry

Computing Spatial Reuse: More Complicated Example

for i = 0 to N-1 i

O Hit
@ Miss

for j = 0 to N-1
Ali+3] = i*j;

A[i+j]:A<[1 1}[;’]4—[0})
. Hsz[o o] k

* Nullspace of H =span{(1,-1)}

* Nullspace of H, = span{(1,0),(0,1)} | —

Carnegie Mellon -

CS745: Memory Hierarchy Optimizations -30- Todd C. Mowry

Group Reuse

for 1 = 0 to 2
for j = 0 to 100

A[i][j] = BI[J1[0] + B[j+1][0];

N 7

* Only consider "uniformly generated sets”
index expressions differ only by constant terms
« Check whether they actually do access the same cache line
* Only the "leading reference” suffers the bulk of the cache misses

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -31- Todd C. Mowry

Localized Tteration Space

« Given finite cache, when does reuse result in locality?

for 1i = 0 to 2
for j =0 to 8

A[i][3]1 = B[3]1[0] + B[j+1]1[0];

100000000
00000000
00000000

Jj
Localized: both i and j loops

(i.e. span{(1,0),(0,1)})

B[j+1][0]

for i = 0 to 2
for j = 0 to 1000000

A[i][3]1 = B[3]1[0] + B[j+1]1[0];

B[j+1][0] eeo@0o@0f0o0@0@0

Q000N 000
J

icooo??oooo

Localized: j loop only
(i.e. span{(0,1)})

 Localized if accesses less data than effective cache size
N carnegie Metion: [

CS745: Memory Hierarchy Optimizations

Todd C. Mowry

Computing Locality

« Reuse Vector Space N Localized Vector Space = Locality Vector Space

« Example: for i = 0 to 2

for j = 0 to 100 /

A[i][j] = BI[J1[0] + B[j+1][0];

« If both loops are localized:
- span{(1,0)} N span{(1,0),(0,1)} = span{(1,0)}
i.e. temporal reuse does result in femporal locality

« If only the innermost loop is localized:
- span{(1,0)} N span{(0,1)} = span({}
i.e. no temporal locality

T Carnegie Metion [N

CS745: Memory Hierarchy Optimizations -33- Todd C. Mowry

