
Carnegie Mellon

CS745: Memory Hierarchy Optimizations Todd C. Mowry

Lecture 25

Memory Hierarchy Optimizations &

Locality Analysis

CS745: Memory Hierarchy Optimizations -2-

Carnegie Mellon

Todd C. Mowry

Caches: A Quick Review

•  How do they work?
•  Why do we care about them?
•  What are typical configurations today?
•  What are some important cache parameters that will affect

performance?

CS745: Memory Hierarchy Optimizations -3-

Carnegie Mellon

Todd C. Mowry

Optimizing Cache Performance

•  Things to enhance:
•  temporal locality
•  spatial locality

•  Things to minimize:
•  conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

CS745: Memory Hierarchy Optimizations -4-

Carnegie Mellon

Todd C. Mowry

Two Things We Can Manipulate

•  Time:
•  When is an object accessed?

•  Space:
•  Where does an object exist in the address space?

How do we exploit these two levers?

CS745: Memory Hierarchy Optimizations -5-

Carnegie Mellon

Todd C. Mowry

Time: Reordering Computation

•  What makes it difficult to know when an object is accessed?

•  How can we predict a better time to access it?
•  What information is needed?

•  How do we know that this would be safe?

CS745: Memory Hierarchy Optimizations -6-

Carnegie Mellon

Todd C. Mowry

Space: Changing Data Layout

•  What do we know about an object’s location?
•  scalars, structures, pointer-based data structures, arrays,

code, etc.

•  How can we tell what a better layout would be?
•  how many can we create?

•  To what extent can we safely alter the layout?

CS745: Memory Hierarchy Optimizations -7-

Carnegie Mellon

Todd C. Mowry

Types of Objects to Consider

•  Scalars
•  Structures & Pointers
•  Arrays

CS745: Memory Hierarchy Optimizations -8-

Carnegie Mellon

Todd C. Mowry

Scalars

•  Locals

•  Globals

•  Procedure arguments

•  Is cache performance a concern here?
•  If so, what can be done?

int x;
double y;
foo(int a){
 int i;
 …
 x = a*i;
 …
}

CS745: Memory Hierarchy Optimizations -9-

Carnegie Mellon

Todd C. Mowry

Structures and Pointers

•  What can we do here?
•  within a node
•  across nodes

•  What limits the compiler’s ability to optimize here?

struct {
 int count;
 double velocity;
 double inertia;
 struct node *neighbors[N];

} node;

CS745: Memory Hierarchy Optimizations -10-

Carnegie Mellon

Todd C. Mowry

Arrays

•  usually accessed within loops nests
•  makes it easy to understand “time”

•  what we know about array element addresses:
•  start of array?
•  relative position within array

double A[N][N], B[N][N];
…
for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

CS745: Memory Hierarchy Optimizations -11-

Carnegie Mellon

Todd C. Mowry

Handy Representation: “Iteration Space”

•  each position represents an iteration

for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

i

j

CS745: Memory Hierarchy Optimizations -12-

Carnegie Mellon

Todd C. Mowry

Visitation Order in Iteration Space

•  Note: iteration space ≠ data space

for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

i

j

CS745: Memory Hierarchy Optimizations -13-

Carnegie Mellon

Todd C. Mowry

When Do Cache Misses Occur?

for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

i

j

i

j

A B

CS745: Memory Hierarchy Optimizations -14-

Carnegie Mellon

Todd C. Mowry

When Do Cache Misses Occur?

for i = 0 to N-1
 for j = 0 to N-1
 A[i+j][0] = i*j;

i

j

CS745: Memory Hierarchy Optimizations -15-

Carnegie Mellon

Todd C. Mowry

Optimizing the Cache Behavior of Array Accesses

•  We need to answer the following questions:
•  when do cache misses occur?

•  use “locality analysis”
•  can we change the order of the iterations (or possibly data

layout) to produce better behavior?
•  evaluate the cost of various alternatives

•  does the new ordering/layout still produce correct results?
•  use “dependence analysis”

CS745: Memory Hierarchy Optimizations -16-

Carnegie Mellon

Todd C. Mowry

Examples of Loop Transformations

•  Loop Interchange
•  Cache Blocking
•  Skewing
•  Loop Reversal
•  …

(we will briefly discuss the first two)

CS745: Memory Hierarchy Optimizations -17-

Carnegie Mellon

Todd C. Mowry

Loop Interchange

•  (assuming N is large relative to cache size)

for i = 0 to N-1
 for j = 0 to N-1
 A[j][i] = i*j;

i

j

Hit
Miss

j

i

for j = 0 to N-1
 for i = 0 to N-1
 A[j][i] = i*j;

CS745: Memory Hierarchy Optimizations -18-

Carnegie Mellon

Todd C. Mowry

Cache Blocking (aka “Tiling”)

now we can exploit temporal locality

for i = 0 to N-1
 for j = 0 to N-1
 f(A[i],A[j]);

for JJ = 0 to N-1 by B
 for i = 0 to N-1
 for j = JJ to max(N-1,JJ+B-1)
 f(A[i],A[j]);

i

j

i

j

A[i] A[j]
i

j

i

j

A[i] A[j]

CS745: Memory Hierarchy Optimizations -19-

Carnegie Mellon

Todd C. Mowry

Impact on Visitation Order in Iteration Space

i

j

for i = 0 to N-1
 for j = 0 to N-1
 f(A[i],A[j]);

for JJ = 0 to N-1 by B
 for i = 0 to N-1
 for j = JJ to max(N-1,JJ+B-1)
 f(A[i],A[j]);

i

j

CS745: Memory Hierarchy Optimizations -20-

Carnegie Mellon

Todd C. Mowry

Cache Blocking in Two Dimensions

•  brings square sub-blocks of matrix “b” into the cache
•  completely uses them up before moving on

for i = 0 to N-1
 for j = 0 to N-1
 for k = 0 to N-1
 c[i,k] += a[i,j]*b[j,k];

for JJ = 0 to N-1 by B
 for KK = 0 to N-1 by B
 for i = 0 to N-1
 for j = JJ to max(N-1,JJ+B-1)
 for k = KK to max(N-1,KK+B-1)
 c[i,k] += a[i,j]*b[j,k];

CS745: Memory Hierarchy Optimizations -21-

Carnegie Mellon

Todd C. Mowry

Predicting Cache Behavior through “Locality Analysis”

•  Definitions:
•  Reuse:

•  accessing a location that has been accessed in the past
•  Locality:

•  accessing a location that is now found in the cache

•  Key Insights
•  Locality only occurs when there is reuse!
•  BUT, reuse does not necessarily result in locality.

•  why not?

CS745: Memory Hierarchy Optimizations -22-

Carnegie Mellon

Todd C. Mowry

Steps in Locality Analysis

1. Find data reuse
•  if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
•  set of inner loops where the data accessed by an iteration is

expected to fit within the cache

3. Find data locality:
•  reuse ∩ localized iteration space ⇒ locality

CS745: Memory Hierarchy Optimizations -23-

Carnegie Mellon

Todd C. Mowry

Types of Data Reuse/Locality

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

Hit
Miss

i

j

A[i][j]

Spatial

i

j

B[j+1][0]

Temporal

i

j

B[j][0]

Group

CS745: Memory Hierarchy Optimizations -24-

Carnegie Mellon

Todd C. Mowry

Reuse Analysis: Representation

•  Map n loop indices into d array indices via array indexing function:

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -25-

Carnegie Mellon

Todd C. Mowry

•  Temporal reuse occurs between iterations and
whenever:

•  Rather than worrying about individual values of and ,
we say that reuse occurs along direction vector when:

•  Solution: compute the nullspace of H

Finding Temporal Reuse

CS745: Memory Hierarchy Optimizations -26-

Carnegie Mellon

Todd C. Mowry

Temporal Reuse Example

•  Reuse between iterations (i1,j1) and (i2,j2) whenever:

•  True whenever j1 = j2, and regardless of the difference
between i1 and i2.
•  i.e. whenever the difference lies along the nullspace of ,

which is span{(1,0)} (i.e. the outer loop).

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -27-

Carnegie Mellon

Todd C. Mowry

More Complicated Example

•  Nullspace of = span{(1,-1)}.

for i = 0 to N-1
 for j = 0 to N-1
 A[i+j][0] = i*j;

Hit
Miss

i

j

CS745: Memory Hierarchy Optimizations -28-

Carnegie Mellon

Todd C. Mowry

Computing Spatial Reuse

•  Replace last row of H with zeros, creating Hs
•  Find the nullspace of Hs

•  Result: vector along which we access the same row

CS745: Memory Hierarchy Optimizations -29-

Carnegie Mellon

Todd C. Mowry

Computing Spatial Reuse: Example

•  Hs =

•  Nullspace of Hs = span{(0,1)}
•  i.e. access same row of A[i][j] along inner loop

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

i

j

Hit
Miss

CS745: Memory Hierarchy Optimizations -30-

Carnegie Mellon

Todd C. Mowry

Computing Spatial Reuse: More Complicated Example

•  Hs =

•  Nullspace of H = span{(1,-1)}

•  Nullspace of Hs = span{(1,0),(0,1)}

for i = 0 to N-1
 for j = 0 to N-1
 A[i+j] = i*j;

Hit
Miss

i

j

CS745: Memory Hierarchy Optimizations -31-

Carnegie Mellon

Todd C. Mowry

Group Reuse

•  Only consider “uniformly generated sets”
•  index expressions differ only by constant terms

•  Check whether they actually do access the same cache line
•  Only the “leading reference” suffers the bulk of the cache misses

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -32-

Carnegie Mellon

Todd C. Mowry

Localized Iteration Space

•  Given finite cache, when does reuse result in locality?

•  Localized if accesses less data than effective cache size

for i = 0 to 2
 for j = 0 to 8
 A[i][j] = B[j][0] + B[j+1][0];

for i = 0 to 2
 for j = 0 to 1000000
 A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

i

j

B[j+1][0]

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})

CS745: Memory Hierarchy Optimizations -33-

Carnegie Mellon

Todd C. Mowry

Computing Locality

•  Reuse Vector Space ∩ Localized Vector Space ⇒ Locality Vector Space

•  Example:

•  If both loops are localized:
•  span{(1,0)} ∩ span{(1,0),(0,1)} ⇒ span{(1,0)}
•  i.e. temporal reuse does result in temporal locality

•  If only the innermost loop is localized:
•  span{(1,0)} ∩ span{(0,1)} ⇒ span{}
•  i.e. no temporal locality

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

