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Caches: A Quick Review 

•  How do they work? 
•  Why do we care about them? 
•  What are typical configurations today? 
•  What are some important cache parameters that will affect 

performance? 
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Optimizing Cache Performance 

•  Things to enhance: 
•  temporal locality 
•  spatial locality 

•  Things to minimize: 
•  conflicts (i.e. bad replacement decisions) 

What can the compiler do to help? 
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Two Things We Can Manipulate 

•  Time: 
•  When is an object accessed? 

•  Space: 
•  Where does an object exist in the address space? 

How do we exploit these two levers? 
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Time: Reordering Computation 

•  What makes it difficult to know when an object is accessed? 

•  How can we predict a better time to access it? 
•  What information is needed? 

•  How do we know that this would be safe? 
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Space: Changing Data Layout 

•  What do we know about an object’s location? 
•  scalars, structures, pointer-based data structures, arrays, 

code, etc. 

•  How can we tell what a better layout would be? 
•  how many can we create? 

•  To what extent can we safely alter the layout? 
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Types of Objects to Consider 

•  Scalars 
•  Structures & Pointers 
•  Arrays 
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Scalars 

•  Locals 

•  Globals 

•  Procedure arguments 

•  Is cache performance a concern here? 
•  If so, what can be done? 

int x; 
double y; 
foo(int a){ 
  int i; 
  … 
  x = a*i; 
  … 
}   
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Structures and Pointers 

•  What can we do here? 
•  within a node 
•  across nodes 

•  What limits the compiler’s ability to optimize here?  

struct { 
 int count; 
 double velocity; 
 double inertia; 
 struct node *neighbors[N]; 

} node; 
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Arrays 

•  usually accessed within loops nests 
•  makes it easy to understand “time” 

•  what we know about array element addresses: 
•  start of array? 
•  relative position within array 

double A[N][N], B[N][N]; 
… 
for i = 0 to N-1 
 for j = 0 to N-1 
  A[i][j] = B[j][i]; 
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Handy Representation: “Iteration Space” 

•  each position represents an iteration 

for i = 0 to N-1 
 for j = 0 to N-1 
  A[i][j] = B[j][i]; 

i

j
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Visitation Order in Iteration Space 

•  Note: iteration space ≠ data space 

for i = 0 to N-1 
 for j = 0 to N-1 
  A[i][j] = B[j][i]; 

i

j
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When Do Cache Misses Occur? 

for i = 0 to N-1 
 for j = 0 to N-1 
  A[i][j] = B[j][i]; 

i

j

i

j

A B 
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When Do Cache Misses Occur? 

for i = 0 to N-1 
 for j = 0 to N-1 
  A[i+j][0] = i*j; 

i

j
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Optimizing the Cache Behavior of Array Accesses 

•  We need to answer the following questions: 
•  when do cache misses occur? 

•  use “locality analysis” 
•  can we change the order of the iterations (or possibly data 

layout) to produce better behavior? 
•  evaluate the cost of various alternatives 

•  does the new ordering/layout still produce correct results? 
•  use “dependence analysis” 
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Examples of Loop Transformations 

•  Loop Interchange 
•  Cache Blocking 
•  Skewing 
•  Loop Reversal 
•  … 

(we will briefly discuss the first two) 
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Loop Interchange 

•  (assuming N is large relative to cache size) 

for i = 0 to N-1 
 for j = 0 to N-1 
  A[j][i] = i*j; 

i

j

Hit 
Miss 

j

i

for j = 0 to N-1 
 for i = 0 to N-1 
  A[j][i] = i*j; 
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Cache Blocking (aka “Tiling”) 

now we can exploit temporal locality 

for i = 0 to N-1 
 for j = 0 to N-1 
  f(A[i],A[j]); 

for JJ = 0 to N-1 by B 
 for i = 0 to N-1 
  for j = JJ to max(N-1,JJ+B-1)  
   f(A[i],A[j]); 

i

j

i

j

A[i] A[j] 
i

j

i

j

A[i] A[j] 
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Impact on Visitation Order in Iteration Space 

i

j

for i = 0 to N-1 
 for j = 0 to N-1 
  f(A[i],A[j]); 

for JJ = 0 to N-1 by B 
 for i = 0 to N-1 
  for j = JJ to max(N-1,JJ+B-1)  
   f(A[i],A[j]); 

i

j
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Cache Blocking in Two Dimensions 

•  brings square sub-blocks of matrix “b” into the cache 
•  completely uses them up before moving on 

for i = 0 to N-1 
 for j = 0 to N-1 
  for k = 0 to N-1 
   c[i,k] += a[i,j]*b[j,k]; 

for JJ = 0 to N-1 by B 
 for KK = 0 to N-1 by B 
  for i = 0 to N-1 
   for j = JJ to max(N-1,JJ+B-1) 
    for k = KK to max(N-1,KK+B-1) 
     c[i,k] += a[i,j]*b[j,k]; 
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Predicting Cache Behavior through “Locality Analysis” 

•  Definitions: 
•  Reuse:  

•  accessing a location that has been accessed in the past 
•  Locality: 

•  accessing a location that is now found in the cache 

•  Key Insights 
•  Locality only occurs when there is reuse! 
•  BUT, reuse does not necessarily result in locality. 

•  why not? 
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Steps in Locality Analysis 

1. Find data reuse 
•  if caches were infinitely large, we would be finished 

2. Determine “localized iteration space” 
•  set of inner loops where the data accessed by an iteration is 

expected to fit within the cache 

3. Find data locality: 
•  reuse ∩ localized iteration space ⇒ locality  
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Types of Data Reuse/Locality 

for i = 0 to 2 
 for j = 0 to 100 
   A[i][j] = B[j][0] + B[j+1][0]; 

Hit 
Miss 

i

j

A[i][j] 

Spatial 

i

j

B[j+1][0] 

Temporal 

i

j

B[j][0] 

Group 
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Reuse Analysis: Representation 

•  Map n loop indices into d array indices via array indexing function: 

for i = 0 to 2 
 for j = 0 to 100 
   A[i][j] = B[j][0] + B[j+1][0]; 
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•  Temporal reuse occurs between iterations     and    
whenever: 

•  Rather than worrying about individual values of     and    , 
we say that reuse occurs along direction vector     when: 

•  Solution: compute the nullspace of H 

Finding Temporal Reuse 
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Temporal Reuse Example 

•  Reuse between iterations (i1,j1) and (i2,j2) whenever: 

•  True whenever j1 = j2, and regardless of the difference 
between i1 and i2. 
•  i.e. whenever the difference lies along the nullspace of         , 

which is span{(1,0)} (i.e. the outer loop). 

for i = 0 to 2 
 for j = 0 to 100 
   A[i][j] = B[j][0] + B[j+1][0]; 



CS745: Memory Hierarchy Optimizations -27- 

Carnegie Mellon 

Todd C. Mowry 

More Complicated Example 

•  Nullspace of             = span{(1,-1)}. 

for i = 0 to N-1 
 for j = 0 to N-1 
  A[i+j][0] = i*j; 

Hit 
Miss 

i

j
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Computing Spatial Reuse 

•  Replace last row of H with zeros, creating Hs 
•  Find the nullspace of Hs 

•  Result: vector along which we access the same row 
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Computing Spatial Reuse: Example 

•  Hs  =  

•  Nullspace of Hs  = span{(0,1)} 
•  i.e. access same row of A[i][j] along inner loop 

for i = 0 to 2 
 for j = 0 to 100 
   A[i][j] = B[j][0] + B[j+1][0]; 

i

j

Hit 
Miss 
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Computing Spatial Reuse: More Complicated Example 

•  Hs  =  

•  Nullspace of H  = span{(1,-1)} 

•  Nullspace of Hs  = span{(1,0),(0,1)} 
 

for i = 0 to N-1 
 for j = 0 to N-1 
  A[i+j] = i*j; 

Hit 
Miss 

i

j
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Group Reuse 

•  Only consider “uniformly generated sets” 
•  index expressions differ only by constant terms 

•  Check whether they actually do access the same cache line 
•  Only the “leading reference” suffers the bulk of the cache misses 

for i = 0 to 2 
 for j = 0 to 100 
   A[i][j] = B[j][0] + B[j+1][0]; 
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Localized Iteration Space 

•  Given finite cache, when does reuse result in locality? 

•  Localized if accesses less data than effective cache size 

for i = 0 to 2 
 for j = 0 to 8 
   A[i][j] = B[j][0] + B[j+1][0]; 

for i = 0 to 2 
 for j = 0 to 1000000 
   A[i][j] = B[j][0] + B[j+1][0]; 

i

j

B[j+1][0] 

i

j

B[j+1][0] 

Localized: both i and j loops 
(i.e. span{(1,0),(0,1)}) 

Localized: j loop only 
(i.e. span{(0,1)}) 
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Computing Locality 

•  Reuse Vector Space ∩ Localized Vector Space ⇒ Locality Vector Space 

•  Example: 

•  If both loops are localized: 
•  span{(1,0)} ∩ span{(1,0),(0,1)} ⇒ span{(1,0)} 
•  i.e. temporal reuse does result in temporal locality 

•  If only the innermost loop is localized: 
•  span{(1,0)} ∩ span{(0,1)} ⇒ span{} 
•  i.e. no temporal locality 

for i = 0 to 2 
 for j = 0 to 100 
   A[i][j] = B[j][0] + B[j+1][0]; 


