
Carnegie Mellon

Lecture 25
Dynamic Compilation

I.  Motivation & Background
II.  Overview
III.  Compilation Policy
IV.  Partial Method Compilation
V.  Partial Dead Code Elimination
VI.  Escape Analysis
VII.  Results

“Partial Method Compilation Using Dynamic Profile Information”,
John Whaley, OOPSLA 01

(Slide content courtesy of John Whaley & Monica Lam.)

Todd C. Mowry 15-745: Dynamic Compilation 1

Carnegie Mellon
Todd C. Mowry 15-745: Dynamic Compilation

I. Goals of This Lecture

•  Beyond static compilation
•  Example of a complete system
•  Use of data flow techniques in a new context
•  Experimental approach

2

Carnegie Mellon

Static/Dynamic

•  Compiler: high-level à binary, static

•  Interpreter: high-level, emulate, dynamic

•  Dynamic compilation: high-level à binary, dynamic

–  machine-independent, dynamic loading
–  cross-module optimization
–  specialize program using runtime information

•  without profiling

Todd C. Mowry 15-745: Dynamic Compilation 3

Carnegie Mellon

High-Level/Binary

•  Binary translator: Binary-binary; mostly dynamic
–  Run “as-is”
–  Software migration

(x86 à alpha, sun, transmeta;
 68000 à powerPC à x86)

–  Virtualization (make hardware virtualizable)
–  Dynamic optimization (Dynamo Rio)
–  Security (execute out of code in a cache that is “protected”)

Todd C. Mowry 15-745: Dynamic Compilation 4

Carnegie Mellon

Closed-world vs. Open-world

•  Closed-world assumption (most static compilers)
–  all code is available a priori for analysis and compilation.

•  Open-world assumption (most dynamic compilers)
–  code is not available
–  arbitrary code can be loaded at run time.

•  Open-world assumption precludes many optimization opportunities.
–  Solution: Optimistically assume the best case, but provide a way out

if necessary.

Todd C. Mowry 15-745: Dynamic Compilation 5

Carnegie Mellon

II. Overview of Dynamic Compilation

•  Interpretation/Compilation policy decisions
–  Choosing what and how to compile

•  Collecting runtime information
–  Instrumentation
–  Sampling

•  Exploiting runtime information
–  frequently-executed code paths

Todd C. Mowry 15-745: Dynamic Compilation 6

Carnegie Mellon

Speculative Inlining

•  Virtual call sites are deadly.
–  Kill optimization opportunities
–  Virtual dispatch is expensive on modern CPUs
–  Very common in object-oriented code

•  Speculatively inline the most likely call target based on class hierarchy
or profile information.

–  Many virtual call sites have only one target, so this technique is very
effective in practice.

Todd C. Mowry 15-745: Dynamic Compilation 7

Method 1
Method 2
Method 3
Method 4
Method 5

V-Table Method 1 Bytecode

Method 2 Bytecode

Method 3 Bytecode

Method 4 Bytecode

Method 5 Bytecode

Carnegie Mellon

 III. Compilation Policy

•  ∆Ttotal = Tcompile – (nexecutions * Timprovement)

–  If ∆Ttotal is negative, our compilation policy decision was effective.

Todd C. Mowry 15-745: Dynamic Compilation 8

•  We can try to:

–  Reduce Tcompile (faster compile times)
–  Increase Timprovement (generate better code)
–  Focus on large nexecutions (compile hot spots)

•  80/20 rule: Pareto Principle
–  20% of the work for 80% of the advantage

Carnegie Mellon

Latency vs. Throughput

•  Tradeoff: startup speed vs. execution performance

Todd C. Mowry 15-745: Dynamic Compilation 9

Startup speed Execution performance
Interpreter Best Poor
‘Quick’ compiler Fair Fair
Optimizing compiler Poor Best

Carnegie Mellon

Multi-Stage Dynamic Compilation System

Todd C. Mowry 15-745: Dynamic Compilation 10

interpreted
code

fully
optimized
code

when execution
 count = t2 (e.g. 25000)

Stage 1:

Stage 2:

Stage 3:

compiled
code

when execution
 count = t1 (e.g. 2000)

Execution count is the sum of
method invocations & back edges
executed.

Carnegie Mellon

Granularity of Compilation

•  Compilation time is proportional to the amount of code being compiled.
•  Many optimizations are not linear.
•  Methods can be large, especially after inlining.
•  Cutting inlining too much hurts performance considerably.
•  Even “hot” methods typically contain some code that is rarely or never

executed.

Todd C. Mowry 15-745: Dynamic Compilation 11

Carnegie Mellon

Example: SpecJVM db

Todd C. Mowry 15-745: Dynamic Compilation 12

void read_db(String fn) {
 int n = 0, act = 0; byte buffer[] = null;
 try {
 FileInputStream sif = new FileInputStream(fn);
 buffer = new byte[n];
 while ((b = sif.read(buffer, act, n-act))>0) {
 act = act + b;
 }
 sif.close();
 if (act != n) {
 /* lots of error handling code, rare */
 }
 } catch (IOException ioe) {
 /* lots of error handling code, rare */
 }
}

Hot
loop

Carnegie Mellon

Example: SpecJVM db

Todd C. Mowry 15-745: Dynamic Compilation 13

void read_db(String fn) {
 int n = 0, act = 0; byte buffer[] = null;
 try {
 FileInputStream sif = new FileInputStream(fn);
 buffer = new byte[n];
 while ((b = sif.read(buffer, act, n-act))>0) {
 act = act + b;
 }
 sif.close();
 if (act != n) {
 /* lots of error handling code, rare */
 }
 } catch (IOException ioe) {
 /* lots of error handling code, rare */
 }
}

Lots of
rare code!

Carnegie Mellon

Optimize hot “regions”, not methods

•  Optimize only the most frequently executed segments within a method.
–  Simple technique:

•  any basic block executed during Stage 2 is considered to be hot.
•  Beneficial secondary effect of improving optimization opportunities on

the common paths.

Todd C. Mowry 15-745: Dynamic Compilation 14

Carnegie Mellon

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 10 100 500 1000 2000 5000

Linpack

JavaC UP

JavaLEX

SwingSet

check

com press

jess

db

javac

m pegaud

m trt

jack

Method-at-a-Time Strategy

Todd C. Mowry 15-745: Dynamic Compilation 15

execution threshold

%
 o

f
ba

si
c

bl
oc

ks
 c

om
pi

le
d

Carnegie Mellon

Actual Basic Blocks Executed

Todd C. Mowry 15-745: Dynamic Compilation 16

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 10 100 500 1000 2000 5000

Linpack

JavaC UP

JavaLEX

SwingSet

check

com press

jess

db

javac

m pegaud

m trt

jack

execution threshold

%
 o

f
ba

si
c

bl
oc

ks
 e

xe
cu

te
d

Carnegie Mellon
Todd C. Mowry 15-745: Dynamic Compilation

Dynamic Code Transformations

•  Compiling partial methods
•  Partial dead code elimination
•  Escape analysis

17

Carnegie Mellon

IV. Partial Method Compilation

1.  Based on profile data, determine the set of rare blocks.
–  Use code coverage information from the first compiled version

Todd C. Mowry 15-745: Dynamic Compilation 18

Carnegie Mellon

Partial Method Compilation

2.  Perform live variable analysis.
–  Determine the set of live variables at rare block entry points.

Todd C. Mowry 15-745: Dynamic Compilation 19

live: x,y,z

Carnegie Mellon

Partial Method Compilation

3.  Redirect the control flow edges that targeted rare blocks, and remove
the rare blocks.

Todd C. Mowry 15-745: Dynamic Compilation 20

to interpreter…

Carnegie Mellon

Partial Method Compilation

4.  Perform compilation normally.
–  Analyses treat the interpreter transfer point as an unanalyzable

method call.

Todd C. Mowry 15-745: Dynamic Compilation 21

Carnegie Mellon

Partial Method Compilation

5.  Record a map for each interpreter transfer point.
–  In code generation, generate a map that specifies the location, in

registers or memory, of each of the live variables.
–  Maps are typically < 100 bytes

Todd C. Mowry 15-745: Dynamic Compilation 22

x: sp - 4
y: r1
z: sp - 8

live: x,y,z

Carnegie Mellon

V. Partial Dead Code Elimination

•  Move computation that is only live on a rare path into the rare block,
saving computation in the common case.

Todd C. Mowry 15-745: Dynamic Compilation 23

Carnegie Mellon

Partial Dead Code Example

Todd C. Mowry 15-745: Dynamic Compilation 24

x = 0;
if (rare branch 1){
 ...
 z = x + y;
 ...
}
if (rare branch 2){
 ...
 a = x + z;
 ...
}

if (rare branch 1) {
 x = 0;
 ...
 z = x + y;
 ...
}
if (rare branch 2) {
 x = 0;
 ...
 a = x + z;
 ...
}

Carnegie Mellon

IV. Escape Analysis

•  Escape analysis finds objects that do not escape a method or a thread.
–  “Captured” by method: can be allocated on the stack or in registers.
–  “Captured” by thread: can avoid synchronization operations.

•  All Java objects are normally heap allocated, so this is a big win.

Todd C. Mowry 15-745: Dynamic Compilation 25

Carnegie Mellon

Escape Analysis

•  Stack allocate objects that don’t escape in the common blocks.
•  Eliminate synchronization on objects that don’t escape the common

blocks.
•  If a branch to a rare block is taken:

–  Copy stack-allocated objects to the heap and update pointers.
–  Reapply eliminated synchronizations.

Todd C. Mowry 15-745: Dynamic Compilation 26

Carnegie Mellon

VII. Run Time Improvement

Todd C. Mowry 15-745: Dynamic Compilation 27

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

check compress jess db javac mpegaud mtrt jack SwingSet linpack JLex JCup

First bar: original (Whole method opt)
Second bar: Partial Method Comp (PMC)
Third bar: PMC + opts
 Bottom bar: Execution time if code was compiled/opt. from the beginning

