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I. Goals of This Lecture 

•  Beyond static compilation 
•  Example of a complete system 
•  Use of data flow techniques in a new context 
•  Experimental approach 
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Static/Dynamic 

•  Compiler:  high-level à binary, static 

•  Interpreter: high-level, emulate, dynamic 

•  Dynamic compilation:  high-level à binary, dynamic 

–  machine-independent, dynamic loading 
–  cross-module optimization 
–  specialize program using runtime information 

•  without profiling 
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High-Level/Binary 

•  Binary translator: Binary-binary; mostly dynamic 
–  Run “as-is” 
–  Software migration  

(x86 à alpha, sun, transmeta;  
 68000 à powerPC à x86)  

–  Virtualization (make hardware virtualizable) 
–  Dynamic optimization (Dynamo Rio) 
–  Security (execute out of code in a cache that is “protected”) 
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Closed-world vs. Open-world 

•  Closed-world assumption (most static compilers) 
–  all code is available a priori for analysis and compilation. 

•  Open-world assumption (most dynamic compilers) 
–  code is not available 
–  arbitrary code can be loaded at run time. 

•  Open-world assumption precludes many optimization opportunities. 
–  Solution: Optimistically assume the best case, but provide a way out 

if necessary. 
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II. Overview of Dynamic Compilation 

•  Interpretation/Compilation policy decisions 
–  Choosing what and how to compile 

•  Collecting runtime information 
–  Instrumentation 
–  Sampling 

•  Exploiting runtime information 
–  frequently-executed code paths 
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Speculative Inlining 

•  Virtual call sites are deadly. 
–  Kill optimization opportunities 
–  Virtual dispatch is expensive on modern CPUs 
–  Very common in object-oriented code 

•  Speculatively inline the most likely call target based on class hierarchy 
or profile information. 

–  Many virtual call sites have only one target, so this technique is very 
effective in practice. 
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Method 1 
Method 2 
Method 3 
Method 4 
Method 5 

V-Table Method 1 Bytecode 

Method 2 Bytecode 

Method 3 Bytecode 

Method 4 Bytecode 

Method 5 Bytecode 
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 III. Compilation Policy 

•  ∆Ttotal = Tcompile – (nexecutions * Timprovement) 

–  If ∆Ttotal is negative, our compilation policy decision was effective. 
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•  We can try to: 

–  Reduce Tcompile (faster compile times) 
–  Increase Timprovement (generate better code) 
–  Focus on large nexecutions (compile hot spots) 

•  80/20 rule: Pareto Principle 
–  20% of the work for 80% of the advantage 
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Latency vs. Throughput 

•  Tradeoff: startup speed vs. execution performance 
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Startup speed Execution performance 
Interpreter Best Poor 
‘Quick’ compiler Fair Fair 
Optimizing compiler Poor Best 
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Multi-Stage Dynamic Compilation System 
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interpreted 
code 

fully 
optimized 
code 

when execution 
    count = t2  (e.g. 25000) 

Stage 1: 

Stage 2: 

Stage 3: 

compiled 
code 

when execution 
    count = t1  (e.g. 2000) 

Execution count is the sum of 
method invocations & back edges 
executed.  
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Granularity of Compilation 

•  Compilation time is proportional to the amount of code being compiled. 
•  Many optimizations are not linear. 
•  Methods can be large, especially after inlining. 
•  Cutting inlining too much hurts performance considerably. 
•  Even “hot” methods typically contain some code that is rarely or never 

executed. 
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Example: SpecJVM db 
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void read_db(String fn) { 
  int n = 0, act = 0; byte buffer[] = null; 
  try { 
    FileInputStream sif = new FileInputStream(fn); 
    buffer = new byte[n]; 
    while ((b = sif.read(buffer, act, n-act))>0) { 
      act = act + b; 
    } 
    sif.close(); 
    if (act != n) { 
      /* lots of error handling code, rare */ 
    } 
  } catch (IOException ioe) { 
    /* lots of error handling code, rare */ 
  } 
} 

Hot 
loop 
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Example: SpecJVM db 
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void read_db(String fn) { 
  int n = 0, act = 0; byte buffer[] = null; 
  try { 
    FileInputStream sif = new FileInputStream(fn); 
    buffer = new byte[n]; 
    while ((b = sif.read(buffer, act, n-act))>0) { 
      act = act + b; 
    } 
    sif.close(); 
    if (act != n) { 
      /* lots of error handling code, rare */ 
    } 
  } catch (IOException ioe) { 
    /* lots of error handling code, rare */ 
  } 
} 

Lots of 
rare code! 
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Optimize hot “regions”, not methods 

•  Optimize only the most frequently executed segments within a method. 
–  Simple technique:  

•  any basic block executed during Stage 2 is considered to be hot. 
•  Beneficial secondary effect of improving optimization opportunities on 

the common paths. 
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Actual Basic Blocks Executed 
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Dynamic Code Transformations 

•  Compiling partial methods 
•  Partial dead code elimination 
•  Escape analysis 
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IV. Partial Method Compilation 

1.  Based on profile data, determine the set of rare blocks. 
–  Use code coverage information from the first compiled version 
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Partial Method Compilation 

2.  Perform live variable analysis. 
–  Determine the set of live variables at rare block entry points. 
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live: x,y,z 
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Partial Method Compilation 

3.  Redirect the control flow edges that targeted rare blocks, and remove  
the rare blocks. 

Todd C. Mowry 15-745: Dynamic Compilation 20 

to interpreter… 
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Partial Method Compilation 

4.  Perform compilation normally. 
–  Analyses treat the interpreter transfer point as an unanalyzable 

method call. 
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Partial Method Compilation 

5.  Record a map for each interpreter transfer point. 
–  In code generation, generate a map that specifies the location, in 

registers or memory, of each of the live variables. 
–  Maps are typically < 100 bytes 
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x: sp - 4 
y: r1 
z: sp - 8 

live: x,y,z 
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V. Partial Dead Code Elimination 

•  Move computation that is only live on a rare path into the rare block, 
saving computation in the common case. 
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Partial Dead Code Example 
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x = 0; 
if (rare branch 1){ 
    ... 
    z = x + y; 
    ... 
} 
if (rare branch 2){ 
    ... 
    a = x + z; 
    ... 
} 
 

if (rare branch 1) { 
    x = 0; 
    ... 
    z = x + y; 
    ... 
} 
if (rare branch 2) { 
    x = 0; 
    ... 
    a = x + z; 
    ... 
} 
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IV. Escape Analysis 

•  Escape analysis finds objects that do not escape a method or a thread. 
–  “Captured” by method: can be allocated on the stack or in registers. 
–  “Captured” by thread: can avoid synchronization operations. 

•  All Java objects are normally heap allocated, so this is a big win. 
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Escape Analysis 

•  Stack allocate objects that don’t escape in the common blocks. 
•  Eliminate synchronization on objects that don’t escape the common 

blocks. 
•  If a branch to a rare block is taken: 

–  Copy stack-allocated objects to the heap and update pointers. 
–  Reapply eliminated synchronizations. 
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VII. Run Time Improvement 
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