Lecture 15
Register Allocation & Spilling

I. Introduction

IT. Abstraction and the Problem
IIT. Algorithm

IV. Spilling

Reading: ALSU 8.8.4
I Carncgic Metion [

Todd C. Mowry 15-745: Register Allocation 1

]
I. Motivation

+ Problem
— Allocation of variables (pseudo-registers) to hardware registers in a
procedure

+ A very important optimization!
— Directly reduces running time
+ (memory access < register access)

— Useful for other optimizations
+ e.g. CSE assumes old values are kept in registers.

Carnegie Mellon [JI

15-745: Register Allocation 2 Todd C. Mowry

Goals

+ Find an allocation for all pseudo-registers, if possible.
+ If there are not enough registers in the machine, choose registers to
spill o memory

Carnegie Mellon [

15-745: Register Allocation 3 Todd C. Mowry

Example
A= .
IF A goto L1
/\
B = .. Ll: C =
=A =A
D = D =
=B + D =C+D
Carnegie Mellon [JI
15-745: Register Allocation 4 Todd €. Mowry

|
II. An Abstraction for Allocation & Assignment

+ Intuitively

— Two pseudo-registers interfere if at some point in the program
they cannot both occupy the same register.

« Interference graph: an undirected graph, where
- nodes = pseudo-registers

— there is an edge between two nodes if their corresponding
pseudo-registers interfere

* What is not represented
— Extent of the interference between uses of different variables
— Where in the program is the interference

Carnegie Mellon [

15-745: Register Allocation 5 Todd C. Mowry

|
Register Allocation and Coloring

* Agraphis n-colorable if:
— every node in the graph can be colored with one of the n colors such
that two adjacent nodes do not have the same color.

+ Assigning n register (without spilling) = Coloring with n colors
— assign a node to a register (color) such that no two adjacent nodes
are assighed same registers(colors)

+ Is spilling necessary? = Is the graph n-colorable?
+ To determine if a graph is n-colorable is NP-complete, for n>2

— Too expensive
— Heuristics

Carnegie Mellon [JI

15-745: Register Allocation 6 Todd C. Mowry

|
ITI. Algorithm

Step 1. Build an interference graph
a. refining notion of a node
b. finding the edges

Step 2. Coloring
— use heuristics to try to find an n-coloring
+ Success:
— colorable and we have an assignment

+ Failure:
— graph not colorable, or
— graph is colorable, but it is too expensive to color

Carnegie Mellon [

15-745: Register Allocation 7 Todd C. Mowry

Step la. Nodes in an Interference Graph

A= ..
IF A goto L1

Carnegie Mellon [JI

15-745: Register Allocation 8 Todd C. Mowry

Live Ranges and Merged Live Ranges

* Motivation: to create an interference graph that is easier to color
— Eliminate interference in a variable's "dead” zones.
— Increase flexibility in allocation:
+ can allocate same variable to different registers

+ Alive range consists of a definition and all the points in a program (e.g.

end of an instruction) in which that definition is live.
— How to compute a live range?

+ Two overlapping live ranges for the same variable must be merged

[a=2] [==2]

Carnegie Mellon [

15-745: Register Allocation 9 Todd C. Mowry

Example (Revisited)

Live Variables
Reaching Definitions

{ 0
A=.. (A)
IF A go‘rol L1 %ﬁg &g

{A} {A} B=.. (B) X

ARy {ABY | ox LL: (A {A)

B i le o 6T
o D= ©) | {5} (AC.D)

{A18,€,,0,D;}
{A2B..C/D,D;) Merge

{AD} {A;B.C.D.D;} ZA
{0} {A2,B,,C;,D;,D2} r .

Carnegie Mellon [JI

15-745: Register Allocation 10 Todd C. Mowry

Merging Live Ranges

* Merging definitions into equivalence classes
— Start by putting each definition in a different equivalence class
— For each point in a program:

« if (i) variable is live, and (i) there are multiple reaching definitions for
the variable, then:

— merge the equivalence classes of all such definitions into one
equivalence class

+ From now on, refer to merged live ranges simply as live ranges
— merged live ranges are also known as "webs"

Carnegie Mellon [

15-745: Register Allocation 1 Todd C. Mowry

Step 1b. Edges of Interference Graph

+ Intuitively:
— Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program.
— Algorithm:
« At each point in the program:
— enter an edge for every pair of live ranges at that point.

+ An optimized definition & algorithm for edges:
— Algorithm:
« check for interference only at the start of each live range
— Faster
— Better quality

Carnegie Mellon [JI

15-745: Register Allocation 12 Todd C. Mowry

Example 2

IF Q goto L1

IF Q L2

Carnegie Mellon [

15-745: Register Allocation 13 Todd C. Mowry

|
Step 2. Coloring

+ Reminder: coloring for n > 2 is NP-complete

+ Observations:
— anode with degree < n =
« can always color it successfully, given its neighbors' colors

— anode with degree = n=

— anode with degree > n =

Carnegie Mellon [JI

15-745: Register Allocation 14 Todd C. Mowry

Coloring Algorithm

+ Algorithm:
— Iferate until stuck or done
+ Pick any node with degree <n
+ Remove the node and its edges from the graph
— If done (no nodes left)
* reverse process and add colors
+ Example (n = 3):

=]
E?

+ Note: degree of a node may drop in iteration
+ Avoids making arbitrary decisions that make coloring fail

Carnegie Mellon -

15-745: Register Allocation 15 Todd C. Mowry

What Does Coloring Accomplish?

+ Done:
— colorable, also obtained an assignment
+ Stuck:

— colorable or not?

=]
E?

Carnegie Mellon -

15-745: Register Allocation 16 Todd C. Mowry

|
Extending Coloring: Design Principles

+ A pseudo-register is
— Colored successfully: allocated a hardware register
— Not colored: left in memory
+ Objective function
— Cost of an uncolored node:
+ proportional to number of uses/definitions (dynamically)
+ estimate by its loop nesting
— Objective: minimize sum of cost of uncolored nodes
* Heuristics
— Benefit of spilling a pseudo-register:
+ increases colorability of pseudo-registers it interferes with
+ can approximate by its degree in interference graph
— Greedy heuristic

+ spill the pseudo-register with lowest cost-to-benefit ratio, whenever
spilling is necessary

Carnegie Mellon [

15-745: Register Spilling 17 Todd C. Mowry

]
Spilling to Memory

+ CISC architectures
— can operate on data in memory directly
— memory operations are slower than register operations

+ RISC architectures
— machine instructions can only apply to registers
— Use
« must first load data from memory to a register before use
Definition
+ must first compute RHS in a register
« store to memory afterwards
Even if spilled o memory, needs a register at time of use/definition

Carnegie Mellon [JI

15-745: Register Spilling 18 Todd C. Mowry

|
Review: Coloring Algorithm (Without Spilling)

« Attempt to Color Graph

Build interference graph
Tterate until there are no nodes left
If there exists a node v with less than n neighbor
place v on stack to register allocate
else
return (coloring heuristics fail)
remove v and its edges from graph

+ Assign registers

While stack is not empty
Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

Carnegie Mellon [

15-745: Register Spilling 19 Todd C. Mowry

|
Chaitin: Coloring and Spilling

+ Identify spilling
Build interference graph
Tterate until there are no nodes left
If there exists a node v with less than n neighbor
| place v on stack to register allocate
else

v = node with hghes‘r degree-to-cost ratio
mark v as spille

remove v and its edges from graph
+ Spilling may require use of registers; change interference graph

While there is spilling
rebuild interference graph and perform step above

* Assign registers

While stack is not empty
Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

Carnegie Mellon [JI

15-745: Register Spilling 20 Todd €. Mowry

Spilling

What should we spill?

— Something that will eliminate a lot of interference edges
— Something that is used infrequently

— Maybe something that is live across a lot of calls?

One Heuristic:

— spill cheapest live range (aka "web")
— Cost = [(# defs & uses)*10Qlop-nest-depth]/degree

Carnegie Mellon [
15-745: Register Spilling 21 Todd C. Mowry

Splitting Live Ranges

Recall: Split pseudo-registers into live ranges to create an interference
graph that is easier to color

— Eliminate interference in a variable's "dead” zones.
El te interf ble's "dead"” s
— Increase flexibility in allocation:

+ can allocate same variable to different registers

o

o
w P

=

[

o Q

n P

Carnegie Mellon [
15-745: Register Spilling 23 Todd C. Mowry

Quality of Chaitin's Algorithm
Giving up too quickly

An optimization: "Prioritize the coloring”

- Still eliminate a node and its edges from graph
- Do not commit to “spilling” just yet

- Try to color again in assignment phase.

15-745: Register Spilling

Carnegie Mellon [JI
22 Todd C. Mowry

Insight

Split a live range into smaller regions (by paying a small cost) to create
an interference graph that is easier to color

— Eliminate interference in a variable's "nearly dead" zones.
« Cost: Memory loads and stores

— Load and store at boundaries of regions with no activity

« # active live ranges at a program point can be > # registers

— Can allocate same variable to different registers
+ Cost: Register operations

— aregister copy between regions of different assignments
+ # active live ranges cannot be > # registers

Carnegie Mellon [JI
15-745: Register Spilling 24 Todd C. Mowry

|
Examples

Example 1:
FOR i = 0 TO 10
FOR j = 0 TO 10000
A=A+
(does not use B)
FOR j = 0 TO 10000
B=B+ ...
(does not use A)
Example 2:
b= c=
=a+b =a+c
c= b=
Carnegie Mellon [
15-745: Register Spilling 25 Todd €. Mowry

Live Range Splitting

+ When do we apply live range splitting?
* Which live range to split?
* Where should the live range be split?
+ How to apply live-range splitting with coloring?
— Advantage of coloring:
+ defers arbitrary assignment decisions until later
— When coloring fails to proceed, may not need to split live range
« degree of a hode >= n does not mean that the graph definitely is not

colorable
— Interference graph does not capture positions of a live range

Carnegie Mellon [JI

15-745: Register Spilling 26 Todd C. Mowry

One Algorithm

+ Observation: spilling is absolutely necessary if
— number of live ranges active at a program point > n

+ Apply live-range splitting before coloring
— Identify a point where number of live ranges > n
— For each live range active around that point:
« find the outermost "block construct” that does not access the variable
— Choose a live range with the largest inactive region
— Split the inactive region from the live range

Carnegie Mellon [

15-745: Register Spilling 27 Todd C. Mowry

|
Summary

+ Problems:
— Given n registers in a machine, is spilling avoided?
— Find an assignment for all pseudo-registers, whenever possible.

+ Solution:
— Abstraction: an interference graph
* nodes: live ranges
« edges: presence of live range at time of definition
— Register Allocation and Assignment problems
* equivalent to n-colorability of interference graph
> NP-complete
— Heuristics to find an assignment for n colors
* successful: colorable, and finds assignment
+ not successful: colorability unknown & no assignment

Carnegie Mellon [JI

15-745: Register Allocation 28 Todd C. Mowry

