
1

Carnegie Mellon

Lecture 15

Register Allocation & Spilling

I.  Introduction
II.  Abstraction and the Problem
III.  Algorithm
IV. Spilling

Reading: ALSU 8.8.4

Todd C. Mowry 15-745: Register Allocation 1

Carnegie Mellon

I. Motivation

•  Problem
–  Allocation of variables (pseudo-registers) to hardware registers in a

procedure

•  A very important optimization!
–  Directly reduces running time

•  (memory access è register access)
–  Useful for other optimizations

•  e.g. CSE assumes old values are kept in registers.

Todd C. Mowry 15-745: Register Allocation 2

Carnegie Mellon

Goals

•  Find an allocation for all pseudo-registers, if possible.
•  If there are not enough registers in the machine, choose registers to

spill to memory

Todd C. Mowry 15-745: Register Allocation 3
Carnegie Mellon

Example

Todd C. Mowry 15-745: Register Allocation 4

B = …
 = A
D =
 = B + D

L1: C = …
 = A
 D =
 = C + D

A = …
IF A goto L1

2

Carnegie Mellon

II. An Abstraction for Allocation & Assignment

•  Intuitively
–  Two pseudo-registers interfere if at some point in the program

they cannot both occupy the same register.

•  Interference graph: an undirected graph, where
–  nodes = pseudo-registers
–  there is an edge between two nodes if their corresponding

pseudo-registers interfere

•  What is not represented
–  Extent of the interference between uses of different variables
–  Where in the program is the interference

Todd C. Mowry 15-745: Register Allocation 5
Carnegie Mellon

Register Allocation and Coloring

•  A graph is n-colorable if:
–  every node in the graph can be colored with one of the n colors such

that two adjacent nodes do not have the same color.

•  Assigning n register (without spilling) = Coloring with n colors
–  assign a node to a register (color) such that no two adjacent nodes

are assigned same registers(colors)

•  Is spilling necessary? = Is the graph n-colorable?

•  To determine if a graph is n-colorable is NP-complete, for n>2
–  Too expensive
–  Heuristics

Todd C. Mowry 15-745: Register Allocation 6

Carnegie Mellon

III. Algorithm

Step 1. Build an interference graph
a.  refining notion of a node
b.  finding the edges

Step 2. Coloring

–  use heuristics to try to find an n-coloring
•  Success:

–  colorable and we have an assignment

•  Failure:
–  graph not colorable, or
–  graph is colorable, but it is too expensive to color

Todd C. Mowry 15-745: Register Allocation 7
Carnegie Mellon

Step 1a. Nodes in an Interference Graph

Todd C. Mowry 15-745: Register Allocation 8

B = …
 = A
D =
 = B + D

L1: C = …
 = A
 D =
 = D + C

A = …
IF A goto L1

 A = 2

 = A

3

Carnegie Mellon

Live Ranges and Merged Live Ranges

•  Motivation: to create an interference graph that is easier to color
–  Eliminate interference in a variable’s “dead” zones.
–  Increase flexibility in allocation:

•  can allocate same variable to different registers

•  A live range consists of a definition and all the points in a program (e.g.
end of an instruction) in which that definition is live.
–  How to compute a live range?

•  Two overlapping live ranges for the same variable must be merged

Todd C. Mowry 15-745: Register Allocation 9

 a = … a = …

… = a

Carnegie Mellon

Merge

Todd C. Mowry 15-745: Register Allocation 10

Example (Revisited)

A = ... (A1)
IF A goto L1

L1:
C = ... (C1)
 = A
D = ... (D1)

B = ... (B1)
 = A
D = B (D2)

A = 2 (A2)

 = A
ret D

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B1}
{B} {A1,B1}
{D} {A1,B1,D2}

Live Variables
Reaching Definitions

{A} {A1}
{A,C} {A1,C1}
{C} {A1,C1}
{D} {A1,C1,D1}

{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}

Carnegie Mellon

Merging Live Ranges

•  Merging definitions into equivalence classes
–  Start by putting each definition in a different equivalence class
–  For each point in a program:

•  if (i) variable is live, and (ii) there are multiple reaching definitions for
the variable, then:
–  merge the equivalence classes of all such definitions into one

equivalence class

•  From now on, refer to merged live ranges simply as live ranges
–  merged live ranges are also known as “webs”

Todd C. Mowry 15-745: Register Allocation 11
Carnegie Mellon

Step 1b. Edges of Interference Graph

•  Intuitively:
–  Two live ranges (necessarily of different variables) may interfere

if they overlap at some point in the program.
–  Algorithm:

•  At each point in the program:
–  enter an edge for every pair of live ranges at that point.

•  An optimized definition & algorithm for edges:

–  Algorithm:
•  check for interference only at the start of each live range

–  Faster
–  Better quality

Todd C. Mowry 15-745: Register Allocation 12

4

Carnegie Mellon

Example 2

Todd C. Mowry 15-745: Register Allocation 13

 A = …

L1: B = …

IF Q goto L1

IF Q goto L2

L2: … = B

 … = A

Carnegie Mellon

Step 2. Coloring

•  Reminder: coloring for n > 2 is NP-complete

•  Observations:
–  a node with degree < n ⇒

•  can always color it successfully, given its neighbors’ colors

–  a node with degree = n ⇒

–  a node with degree > n ⇒

Todd C. Mowry 15-745: Register Allocation 14

Carnegie Mellon

Coloring Algorithm

•  Algorithm:
–  Iterate until stuck or done

•  Pick any node with degree < n
•  Remove the node and its edges from the graph

–  If done (no nodes left)
•  reverse process and add colors

•  Example (n = 3):

•  Note: degree of a node may drop in iteration
•  Avoids making arbitrary decisions that make coloring fail

Todd C. Mowry 15-745: Register Allocation 15

B

C E A

D

Carnegie Mellon

What Does Coloring Accomplish?

•  Done:
–  colorable, also obtained an assignment

•  Stuck:
–  colorable or not?

Todd C. Mowry 15-745: Register Allocation 16

B

C E A

D

5

Carnegie Mellon

Extending Coloring: Design Principles

•  A pseudo-register is
–  Colored successfully: allocated a hardware register
–  Not colored: left in memory

•  Objective function
–  Cost of an uncolored node:

•  proportional to number of uses/definitions (dynamically)
•  estimate by its loop nesting

–  Objective: minimize sum of cost of uncolored nodes
•  Heuristics

–  Benefit of spilling a pseudo-register:
•  increases colorability of pseudo-registers it interferes with
•  can approximate by its degree in interference graph

–  Greedy heuristic
•  spill the pseudo-register with lowest cost-to-benefit ratio, whenever

spilling is necessary

Todd C. Mowry 15-745: Register Spilling 17
Carnegie Mellon

Spilling to Memory

•  CISC architectures
–  can operate on data in memory directly
–  memory operations are slower than register operations

•  RISC architectures
–  machine instructions can only apply to registers
–  Use

•  must first load data from memory to a register before use
–  Definition

•  must first compute RHS in a register
•  store to memory afterwards

–  Even if spilled to memory, needs a register at time of use/definition

Todd C. Mowry 15-745: Register Spilling 18

Carnegie Mellon
Todd C. Mowry 15-745: Register Spilling 19

Review: Coloring Algorithm (Without Spilling)

•  Attempt to Color Graph
 Build interference graph
 Iterate until there are no nodes left
 If there exists a node v with less than n neighbor
 place v on stack to register allocate
 else
 return (coloring heuristics fail)
 remove v and its edges from graph

•  Assign registers
 While stack is not empty
 Remove v from stack
 Reinsert v and its edges into the graph
 Assign v a color that differs from all its neighbors

Carnegie Mellon
Todd C. Mowry 15-745: Register Spilling 20

Chaitin: Coloring and Spilling

•  Identify spilling
 Build interference graph
 Iterate until there are no nodes left
 If there exists a node v with less than n neighbor
 place v on stack to register allocate
 else
 v = node with highest degree-to-cost ratio
 mark v as spilled
 remove v and its edges from graph

•  Spilling may require use of registers; change interference graph
 While there is spilling

 rebuild interference graph and perform step above
•  Assign registers

 While stack is not empty
 Remove v from stack
 Reinsert v and its edges into the graph
 Assign v a color that differs from all its neighbors

6

Carnegie Mellon

Spilling

•  What should we spill?
–  Something that will eliminate a lot of interference edges
–  Something that is used infrequently
–  Maybe something that is live across a lot of calls?

•  One Heuristic:
–  spill cheapest live range (aka “web”)
–  Cost = [(# defs & uses)*10loop-nest-depth]/degree

Todd C. Mowry 15-745: Register Spilling 21
Carnegie Mellon

Quality of Chaitin’s Algorithm

•  Giving up too quickly

•  An optimization: “Prioritize the coloring”
–  Still eliminate a node and its edges from graph
–  Do not commit to “spilling” just yet
–  Try to color again in assignment phase.

Todd C. Mowry 15-745: Register Spilling 22

B

A C

D

E

Carnegie Mellon

Splitting Live Ranges

•  Recall: Split pseudo-registers into live ranges to create an interference
graph that is easier to color
–  Eliminate interference in a variable’s “dead” zones.
–  Increase flexibility in allocation:

•  can allocate same variable to different registers

Todd C. Mowry 15-745: Register Spilling 23

IF A goto L1
A = ...

B = ... L1: C =...
 = A
D = A

D =

A = D

= A

A1

C B

D

A2

= B = C

Carnegie Mellon

Insight

•  Split a live range into smaller regions (by paying a small cost) to create
an interference graph that is easier to color
–  Eliminate interference in a variable’s “nearly dead” zones.

•  Cost: Memory loads and stores
–  Load and store at boundaries of regions with no activity

•  # active live ranges at a program point can be > # registers

–  Can allocate same variable to different registers
•  Cost: Register operations

–  a register copy between regions of different assignments
•  # active live ranges cannot be > # registers

Todd C. Mowry 15-745: Register Spilling 24

7

Carnegie Mellon
Todd C. Mowry 15-745: Register Spilling 25

Examples

Example 1:

 FOR i = 0 TO 10
 FOR j = 0 TO 10000

 A = A + ...
 (does not use B)
 FOR j = 0 TO 10000

 B = B + ...
 (does not use A)

Example 2:

a =

b =
= a + b

c =

= b+c

b =

c =
= a + c

Carnegie Mellon

Live Range Splitting

•  When do we apply live range splitting?

•  Which live range to split?

•  Where should the live range be split?

•  How to apply live-range splitting with coloring?
–  Advantage of coloring:

•  defers arbitrary assignment decisions until later
–  When coloring fails to proceed, may not need to split live range

•  degree of a node >= n does not mean that the graph definitely is not
colorable

–  Interference graph does not capture positions of a live range

Todd C. Mowry 15-745: Register Spilling 26

Carnegie Mellon

One Algorithm

•  Observation: spilling is absolutely necessary if
–  number of live ranges active at a program point > n

•  Apply live-range splitting before coloring

–  Identify a point where number of live ranges > n
–  For each live range active around that point:

•  find the outermost “block construct” that does not access the variable
–  Choose a live range with the largest inactive region
–  Split the inactive region from the live range

Todd C. Mowry 15-745: Register Spilling 27
Carnegie Mellon

Summary

•  Problems:
–  Given n registers in a machine, is spilling avoided?
–  Find an assignment for all pseudo-registers, whenever possible.

•  Solution:
–  Abstraction: an interference graph

•  nodes: live ranges
•  edges: presence of live range at time of definition

–  Register Allocation and Assignment problems
•  equivalent to n-colorability of interference graph

è NP-complete
–  Heuristics to find an assignment for n colors

•  successful: colorable, and finds assignment
•  not successful: colorability unknown & no assignment

Todd C. Mowry 15-745: Register Allocation 28

