Lecture 10

Partial Redundancy Elimination

+ Global code motion optimization
* Remove partially redundant expressions
+  Loop invariant code motion
+ Can be extended to do Strength Reduction

* No loop analysis needed
+ Bidirectional flow problem
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Redundancy

» A Common Subexpression is a Redundant Computation

tl=a+b t2 =a+b

— =

t3=a+b

*  Occurrence of expression E at P is redundant if E is available there:

- E is evaluated along every path to P, with no operands redefined
since.

* Redundant expression can be eliminated
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Partial Redundancy

+ Partially Redundant Computation

tl=a+b

— =

t3=a+b

*  Occurrence of expression E at P is partially redundant if E is partially
available there:
— E is evaluated along at least one path to P, with no operands
redefined since.

+ Partially redundant expression can be eliminated if we can insert
computations to make it fully redundant.
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Loop Invariants are Partial Redundancies

+ Loop invariant expression is partially redundant

+ As before, partially redundant computation can be eliminated if we
insert computations to make it fully redundant.

+ Remaining copies can be eliminated through copy propagation or more
complex analysis of partially redundant assignments.
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Partial Redundancy Elimination

*  The Method:

1. Insert Computations to make partially redundant expression(s) fully
redundant.

2. Eliminate redundant expression(s).

» Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

+ For this lecture, we assume one expression of interest, a+b.

— Inpractice, with some restrictions, can do many expressions in
parallel.
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Which Occurrences Might Be Eliminated?

+ InCSE,
— Eis available at P if it is previously evaluated along every path to P,
with no subsequent redefinitions of operands.

— If so, we can eliminate computation at P.

« InPRE,
— Eis partially available at P if it is previously evaluated along at
least one path to P, with no subsequent redefinitions of operands.
— If so, we might be able to eliminate computation at P, if we can
insert computations to make it fully redundant.
+ Occurrences of E where E is partially available are candidates for
elimination.
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Finding Partially Available Expressions

+ Forward flow problem
— Lattice = { 0, 1}, meet is union (U), Top = O (not PAVAILL), entry = O

« PAVOUTIi] = (PAVIN[I] - KILL[i]) U AVLOCIi]

0 i =entry
« PAVIN[i] =
U PAVOUT[p] otherwise
p € preds(i)
» For a block,
« Expression is locally available (AVLOC) if downwards exposed.

« Expression is killed (KILL) if any assignments to operands.

. . '

a = . .=a+b
=a+b a =
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Partial Availability Example

+ For expression a+b.

a = .. KILL=1 PAVIN =
AVLOC=0 PAVOUT =

tl=a+b KILL=0 PAVIN =
AVLOC=1 PAVOUT =

KILL =1 PAVIN =
a+b AVLOC=1 PAVOUT=

™
nn

t2

+ Occurrence in loop is partially redundant.

Carnegie Mellon [

15-745: Partial Redundancy Elim. 9 Todd C. Mowry

|
Where Can We Insert Computations?

+ Safety: never introduce a new expression along any path.

tl=a+b

T, —

t3=a+b

— Insertion could introduce exception, change program behavior.
— If we can add a new basic block, can insert safely in most cases.
— Solution: insert expression only where it is anticipated.

+ Performance: never increase the # of computations on any path.
— Under simple model, guarantees program won't get worse.
— Reality: might increase register lifetimes, add copies, lose.
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Finding Anticipated Expressions

+ Backward flow problem
— Lattice = { 0, 1}, meet is intersection (N), top = 1 (ANT), exit = 0

+ ANTIN[i] = ANTLOC[i] U (ANTOUTII] - KILL[i])

0 i = exit
« ANTOUTIi] =
g N ANTIN[s] otherwise

s € suce(i)
+ For a block,
+ Expression locally anticipated (ANTLOC) if upwards exposed.

b . .

a+b

nn
n
+
o
n
nn
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Anticipation Example
+ For expression a+b.
a = . KILL=1 ANTIN =
l ANTLOC=0 ANTOUT =
tl=a+b KILL=0  ANTIN=
ANTLOC=1 ANTOUT =
a = . KILL =1 ANTIN =
t2 =a +b ANTLOC=0 ANTOUT =
+ Expression is anticipated at end of first block.
+ Computation may be safely inserted there.
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Where Do We Want to Insert Computations?

*  Morel-Renvoise and variants: “Placement Possible”
— Dataflow analysis shows where to insert:
+ PPIN = "Placement possible at entry of block or before.”
+ PPOUT = "Placement possible at exit of block or before.”
— Insert at earliest place where PP = 1.
Only place at end of blocks,

+ PPIN really means “Placement possible or not necessary in each
predecessor block.”

— Don't need to insert where expression is already available.

« INSERTIi] = PPOUTLi] N (=PPIN[i] U KILL[i]) N =AVOUTIi]

Remove (upwards-exposed) computations where PPIN=1.
« DELETE[i] = PPIN[i] N ANTLOC[i]
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Where Do We Want to Insert? Example

a = . PPIN =
PPOUT =

tl=a+b PPIN =
PPOUT =

a = PPIN =
t2 =a+b PPOUT =
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Formulating the Problem

+ PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors

+ PPIN: we want to place at input of this block only if (all of):

— we have a local computation to place, or a placement at the end of
this block which we can move up

— we want to move computation to output of all predecessors where
expression is not already available (don't insert at input)

— we can gain something by placing it here (PAVIN)
+ Forward or Backward?
— BOTH!

« Problem is bidirectional, but lattice {0, 1} is finite, so
— as long as transfer functions are monotone, it converges.
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Computing "Placement Possible"

+ PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors

0 i=entry
- PPOUTII] =
fi1 N PPIN[s] otherwise

s € succ(i)
+ PPIN: we want to place at start of this block only if (all of):

— we have a local computation to place, or a placement at the end of
this block which we can move up

— we want to move computation to output of all predecessors where
expression is not already available (don't insert at input)

— we gain something by moving it up (PAVIN heuristic)
0

i=exit
- PPIN[i]= (LANTLOC[i] U (PPOUTIi] - KILL[i1)]
N () (PPOUTIp]U AVOUTI[p])  otherwise
PPl pAVINGI])
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"Placement Possible” Example 1

a2 = v KILL=1 PAVIN = 0 PPIN =
AVLOC=0 PAVOUT=0
l ANTLOC=0 AVOUT=0 PPOUT =

€1 - a+ b | KLL=0  PAVIN=1 PPIN=
AVLOC=1 PAVOUT=1
ANTLOC=1 AVOUT=1 PPOUT:=

KILL=1 PAVIN =1 PPIN =

a = _ _
£2 = a +b AVLOC=1 PAVOUT=1
‘ ANTLOC=0 AVOUT=1 PPOUT=
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"Placement Possible" Example 2

KILL=1 PAVIN = 0 PPIN =

a = ..
tl=a+b AVLOC=1 PAVOUT=1
/ ANTLOC=0 AVOUT:=1 PPOUT =
2= KILL =1 PAVIN=0  PPIN=
AVLOC=0 PAVOUT=0
ANTLOC=0 AVOUT=0 PPOUT=
22 =a+b KILL=0  PAVIN=1  PPIN=
AVLOC=1 PAVOUT=1
ANTLOC=1 AVOUT=1 PPOUT=
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"Placement Possible" Correcthess

+ Convergence of analysis: transfer functions are monotone.
+ Safety: Insert only if anticipated.

PPIN[i]C (PPOUTTi] - KILL[i]) U ANTLOCIi]

0 i = exit
PPOUTIi] = N PPIN[s] otherwise

s € succ(i)
« INSERT CPPOUTC ANTOUT, so insertion is safe.

+ Performance: never increase the # of computations on any path
+ DELETE = PPIN N ANTLOC
+ On every path from an INSERT, there is a DELETE.
+ The number of computations on a path does not increase.
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Morel-Renvoise Limitations

*  Movement usefulness tied to PAVIN heuristic
— Makes some useless moves, might increase register lifetimes:

a+b

a+b

— Doesn't find some eliminations:

+ Bidirectional data flow difficult to compute.
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Related Work

+ Don't need heuristic
— Dhamdhere, Drechsler-Stadel, Knoop,et.al.
— use restricted flow graph or allow edge placements.

+ Data flow can be separated into unidirectional passes
— Dhamdhere, Knoop, et. al.

+ Improvement still tied to accuracy of computational model

— Assumes performance depends only on the number of computations
along any path.

— Ignores resource constraint issues: register allocation, efc.

— Knoop, et.al. give "earliest” and “latest” placement algorithms which
begin to address this.

* Further issues:
— more than one expression at once, strength reduction, redundant
assignments, redundant stores.
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