Lecture 10

Partial Redundancy Elimination

+ Global code motion optimization
* Remove partially redundant expressions
+ Loop invariant code motion
+ Can be extended to do Strength Reduction

* No loop analysis needed
+ Bidirectional flow problem

I Carncgic Metion [

Todd C. Mowry 15-745: Partial Redundancy Elim. 1

|
References

1. E. Morel and C. Renvoise, “Global Optimization by Suppression of Partial Redundancies,”
CACM 22 (2), Feb. 1979, pp. 96-103.

2. Knoop, Riithing, Steffen, "Lazy Code Motion,” PLDI 92.

3. F.Chow, A Portable Machine-Independent Global Optimizer--Design and Measurements.
Stanford CSL memo 83-254.

4. IP)hamdhere, Rosen, Zadeck, "How to Analyze Large Programs Efficiently and Informatively,”

LDI 92.

5. K. Drechsler, M. Stadel, "A Solution to a Problem with Morel and Renvoise's ‘Global
Optimization by Suppression of Partial Redundancies,” ACM TOPLAS 10 (4), Oct. 1988, pp.
635-640.

6. D. Dhamdhere, "Practical Adaptation of the Global Optimization Algorithm of Morel and
Renvoise,” ACM TOPLAS 13 (2), April 1991.

7. D. Dhamdhere, "A Fast Algorithm for Code Movement Optimisation,” SIGPLAN Not. 23 (10),
1988, pp. 172-180.

8. 5. Joshi, D. Dhamdhere, "A composite hoisting --- strength reduction transformation for
global program optimisation,” International Journal of Computer Mathematics, 11 (1982), pp.
21-41, 111-126.

Carnegie Mellon [JI

15-745: Partial Redundancy Elim. 2 Todd C. Mowry

|
Redundancy

» A Common Subexpression is a Redundant Computation

tl=a+b t2 =a+b

— =

t3=a+b

* Occurrence of expression E at P is redundant if E is available there:

- E is evaluated along every path to P, with no operands redefined
since.

* Redundant expression can be eliminated

Carnegie Mellon [

15-745: Partial Redundancy Elim. 3 Todd C. Mowry

|
Partial Redundancy

+ Partially Redundant Computation

tl=a+b

— =

t3=a+b

* Occurrence of expression E at P is partially redundant if E is partially
available there:
— E is evaluated along at least one path to P, with no operands
redefined since.

+ Partially redundant expression can be eliminated if we can insert
computations to make it fully redundant.

Carnegie Mellon [JI

15-745: Partial Redundancy Elim. 4 Todd C. Mowry

Loop Invariants are Partial Redundancies

+ Loop invariant expression is partially redundant

+ As before, partially redundant computation can be eliminated if we
insert computations to make it fully redundant.

+ Remaining copies can be eliminated through copy propagation or more
complex analysis of partially redundant assignments.

Carnegie Mellon [

15-745: Partial Redundancy Elim. 5 Todd C. Mowry

|
Partial Redundancy Elimination

* The Method:

1. Insert Computations to make partially redundant expression(s) fully
redundant.

2. Eliminate redundant expression(s).

» Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

+ For this lecture, we assume one expression of interest, a+b.

— Inpractice, with some restrictions, can do many expressions in
parallel.

Carnegie Mellon [JI

15-745: Partial Redundancy Elim. 6 Todd C. Mowry

|
Which Occurrences Might Be Eliminated?

+ InCSE,
— Eis available at P if it is previously evaluated along every path to P,
with no subsequent redefinitions of operands.

— If so, we can eliminate computation at P.

« InPRE,
— Eis partially available at P if it is previously evaluated along at
least one path to P, with no subsequent redefinitions of operands.
— If so, we might be able to eliminate computation at P, if we can
insert computations to make it fully redundant.
+ Occurrences of E where E is partially available are candidates for
elimination.

Carnegie Mellon [

15-745: Partial Redundancy Elim. 7 Todd C. Mowry

|
Finding Partially Available Expressions

+ Forward flow problem
— Lattice = { 0, 1}, meet is union (U), Top = O (not PAVAILL), entry = O

« PAVOUTIi] = (PAVIN[I] - KILL[i]) U AVLOCIi]

0 i =entry
« PAVIN[i] =
U PAVOUT[p] otherwise
p € preds(i)
» For a block,
« Expression is locally available (AVLOC) if downwards exposed.

« Expression is killed (KILL) if any assignments to operands.

. . '

a = . .=a+b
=a+b a =
Carnegie Mellon [JI
15-745: Partial Redundancy Elim 8 Todd €. Mowry

Partial Availability Example

+ For expression a+b.

a = .. KILL=1 PAVIN =
AVLOC=0 PAVOUT =

tl=a+b KILL=0 PAVIN =
AVLOC=1 PAVOUT =

KILL =1 PAVIN =
a+b AVLOC=1 PAVOUT=

™
nn

t2

+ Occurrence in loop is partially redundant.

Carnegie Mellon [

15-745: Partial Redundancy Elim. 9 Todd C. Mowry

|
Where Can We Insert Computations?

+ Safety: never introduce a new expression along any path.

tl=a+b

T, —

t3=a+b

— Insertion could introduce exception, change program behavior.
— If we can add a new basic block, can insert safely in most cases.
— Solution: insert expression only where it is anticipated.

+ Performance: never increase the # of computations on any path.
— Under simple model, guarantees program won't get worse.
— Reality: might increase register lifetimes, add copies, lose.

|
Finding Anticipated Expressions

+ Backward flow problem
— Lattice = { 0, 1}, meet is intersection (N), top = 1 (ANT), exit = 0

+ ANTIN[i] = ANTLOC[i] U (ANTOUTII] - KILL[i])

0 i = exit
« ANTOUTIi] =
g N ANTIN[s] otherwise

s € suce(i)
+ For a block,
+ Expression locally anticipated (ANTLOC) if upwards exposed.

b . .

a+b

nn
n
+
o
n
nn

Carnegie Mellon [

15-745: Partial Redundancy Elim. 1 Todd C. Mowry

Carnegie Mellon [JI
15-745: Partial Redundancy Elim. 10 Todd C. Mowry
Anticipation Example
+ For expression a+b.
a = . KILL=1 ANTIN =
l ANTLOC=0 ANTOUT =
tl=a+b KILL=0 ANTIN=
ANTLOC=1 ANTOUT =
a = . KILL =1 ANTIN =
t2 =a +b ANTLOC=0 ANTOUT =
+ Expression is anticipated at end of first block.
+ Computation may be safely inserted there.
Carnegie Mellon [JI
15-745: Partial Redundancy Elim. 12 Todd C. Mowry

|
Where Do We Want to Insert Computations?

* Morel-Renvoise and variants: “Placement Possible”
— Dataflow analysis shows where to insert:
+ PPIN = "Placement possible at entry of block or before.”
+ PPOUT = "Placement possible at exit of block or before.”
— Insert at earliest place where PP = 1.
Only place at end of blocks,

+ PPIN really means “Placement possible or not necessary in each
predecessor block.”

— Don't need to insert where expression is already available.

« INSERTIi] = PPOUTLi] N (=PPIN[i] U KILL[i]) N =AVOUTIi]

Remove (upwards-exposed) computations where PPIN=1.
« DELETE[i] = PPIN[i] N ANTLOC[i]

Carnegie Mellon [

15-745: Partial Redundancy Elim. 13 Todd C. Mowry

Where Do We Want to Insert? Example

a = . PPIN =
PPOUT =

tl=a+b PPIN =
PPOUT =

a = PPIN =
t2 =a+b PPOUT =
Carnegie Mellon [JI
15-745: Partial Redundancy Elim. 14 Todd C. Mowry

|
Formulating the Problem

+ PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors

+ PPIN: we want to place at input of this block only if (all of):

— we have a local computation to place, or a placement at the end of
this block which we can move up

— we want to move computation to output of all predecessors where
expression is not already available (don't insert at input)

— we can gain something by placing it here (PAVIN)
+ Forward or Backward?
— BOTH!

« Problem is bidirectional, but lattice {0, 1} is finite, so
— as long as transfer functions are monotone, it converges.

Carnegie Mellon [

15-745: Partial Redundancy Elim. 15 Todd C. Mowry

|
Computing "Placement Possible"

+ PPOUT: we want to place at output of this block only if
— we want to place at entry of all successors

0 i=entry
- PPOUTII] =
fi1 N PPIN[s] otherwise

s € succ(i)
+ PPIN: we want to place at start of this block only if (all of):

— we have a local computation to place, or a placement at the end of
this block which we can move up

— we want to move computation to output of all predecessors where
expression is not already available (don't insert at input)

— we gain something by moving it up (PAVIN heuristic)
0

i=exit
- PPIN[i]= (LANTLOC[i] U (PPOUTIi] - KILL[i1)]
N () (PPOUTIp]U AVOUTI[p]) otherwise
PPl pAVINGI])
Carnegie Mellon [JI

15-745: Partial Redundancy Elim. 16 Todd C. Mowry

"Placement Possible” Example 1

a2 = v KILL=1 PAVIN = 0 PPIN =
AVLOC=0 PAVOUT=0
l ANTLOC=0 AVOUT=0 PPOUT =

€1 - a+ b | KLL=0 PAVIN=1 PPIN=
AVLOC=1 PAVOUT=1
ANTLOC=1 AVOUT=1 PPOUT:=

KILL=1 PAVIN =1 PPIN =

a = _ _
£2 = a +b AVLOC=1 PAVOUT=1
‘ ANTLOC=0 AVOUT=1 PPOUT=
Carnegie Mellon [
15-745: Partial Redundancy Elim. Todd C. Mowry

"Placement Possible" Example 2

KILL=1 PAVIN = 0 PPIN =

a = ..
tl=a+b AVLOC=1 PAVOUT=1
/ ANTLOC=0 AVOUT:=1 PPOUT =
2= KILL =1 PAVIN=0 PPIN=
AVLOC=0 PAVOUT=0
ANTLOC=0 AVOUT=0 PPOUT=
22 =a+b KILL=0 PAVIN=1 PPIN=
AVLOC=1 PAVOUT=1
ANTLOC=1 AVOUT=1 PPOUT=
Carnegie Mellon [JI
15-745: Partial Redundancy Elim. Todd C. Mowry

|
"Placement Possible" Correcthess

+ Convergence of analysis: transfer functions are monotone.
+ Safety: Insert only if anticipated.

PPIN[i]C (PPOUTTi] - KILL[i]) U ANTLOCIi]

0 i = exit
PPOUTIi] = N PPIN[s] otherwise

s € succ(i)
« INSERT CPPOUTC ANTOUT, so insertion is safe.

+ Performance: never increase the # of computations on any path
+ DELETE = PPIN N ANTLOC
+ On every path from an INSERT, there is a DELETE.
+ The number of computations on a path does not increase.

Carnegie Mellon [

15-745: Partial Redundancy Elim. 19 Todd C. Mowry

Morel-Renvoise Limitations

* Movement usefulness tied to PAVIN heuristic
— Makes some useless moves, might increase register lifetimes:

a+b

a+b

— Doesn't find some eliminations:

+ Bidirectional data flow difficult to compute.

Carnegie Mellon [JI

15-745: Partial Redundancy Elim. 20 Todd C. Mowry

|
Related Work

+ Don't need heuristic
— Dhamdhere, Drechsler-Stadel, Knoop,et.al.
— use restricted flow graph or allow edge placements.

+ Data flow can be separated into unidirectional passes
— Dhamdhere, Knoop, et. al.

+ Improvement still tied to accuracy of computational model

— Assumes performance depends only on the number of computations
along any path.

— Ignores resource constraint issues: register allocation, efc.

— Knoop, et.al. give "earliest” and “latest” placement algorithms which
begin to address this.

* Further issues:
— more than one expression at once, strength reduction, redundant
assignments, redundant stores.

Carnegie Mellon [

15-745: Partial Redundancy Elim. 21 Todd C. Mowry

