
Carnegie Mellon 

Lecture 10 

Partial Redundancy Elimination 

•  Global code motion optimization 
•  Remove partially redundant expressions 
•  Loop invariant code motion 
•  Can be extended to do Strength Reduction 

•  No loop analysis needed 
•  Bidirectional flow problem 
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Redundancy 

•  A Common Subexpression is a Redundant Computation 

•  Occurrence of expression E at P is redundant if E is available there: 
–  E is evaluated along every path to P, with no operands redefined 

since. 
•  Redundant expression can be eliminated 
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Partial Redundancy 

•  Partially Redundant Computation 

•  Occurrence of expression E at P is partially redundant if E is partially 
available there: 
–  E is evaluated along at least one path to P, with no operands 

redefined since. 
•  Partially redundant expression can be eliminated if we can insert 

computations to make it fully redundant. 
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Loop Invariants are Partial Redundancies 

•  Loop invariant expression is partially redundant  

•  As before, partially redundant computation can be eliminated if we 
insert computations to make it fully redundant. 

•  Remaining copies can be eliminated through copy propagation or more 
complex analysis of partially redundant assignments. 
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Partial Redundancy Elimination 

•  The Method: 
1.  Insert Computations to make partially redundant expression(s) fully 

redundant. 
2.  Eliminate redundant expression(s). 

•  Issues [Outline of Lecture]: 
1.  What expression occurrences are candidates for elimination? 
2.  Where can we safely insert computations? 
3.  Where do we want to insert them? 

•  For this lecture, we assume one expression of interest, a+b. 
–  In practice, with some restrictions, can do many expressions in 

parallel. 
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Which Occurrences Might Be Eliminated? 

•  In CSE, 
–  E is available at P if it is previously evaluated along every path to P, 

with no subsequent redefinitions of operands. 
–  If so, we can eliminate computation at P. 

•  In PRE, 
–  E is partially available at P if it is previously evaluated along at 

least one path to P, with no subsequent redefinitions of operands. 
–  If so, we might be able to eliminate computation at P, if we can 

insert computations to make it fully redundant. 
•  Occurrences of E where E is partially available are candidates for 

elimination. 
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Finding Partially Available Expressions 

•  Forward flow problem 
–  Lattice = { 0, 1 }, meet is union (∪), Top = 0 (not PAVAIL), entry = 0 

•  PAVOUT[i] = (PAVIN[i] – KILL[i]) ∪ AVLOC[i] 

•  PAVIN[i] = 

•  For a block, 
•  Expression is locally available (AVLOC) if downwards exposed. 
•  Expression is killed (KILL) if any assignments to operands. 
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Partial Availability Example 

•  For expression a+b.  

•  Occurrence in loop is partially redundant. 
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Where Can We Insert Computations? 

•  Safety: never introduce a new expression along any path. 

–  Insertion could introduce exception, change program behavior. 
–  If we can add a new basic block, can insert safely in most cases. 
–  Solution: insert expression only where it is anticipated. 

•  Performance: never increase the # of computations on any path. 
–  Under simple model, guarantees program won’t get worse. 
–  Reality: might increase register lifetimes, add copies, lose. 
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Finding Anticipated Expressions 

•  Backward flow problem 
–  Lattice = { 0, 1 }, meet is intersection (∩), top = 1 (ANT), exit = 0 

•  ANTIN[i] = ANTLOC[i] ∪ (ANTOUT[i] - KILL[i])  

•  ANTOUT[i] = 

•  For a block, 
•  Expression locally anticipated (ANTLOC) if upwards exposed. 
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Anticipation Example 

•  For expression a+b.  

•  Expression is anticipated at end of first block. 
•  Computation may be safely inserted there. 
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Where Do We Want to Insert Computations? 

•  Morel-Renvoise and variants: “Placement Possible”  
–  Dataflow analysis shows where to insert: 

•  PPIN = “Placement possible at entry of block or before.” 
•  PPOUT = “Placement possible at exit of block or before.” 

–  Insert at earliest place where PP = 1. 
–  Only place at end of blocks, 

•  PPIN really means “Placement possible or not necessary in each 
predecessor block.” 

–  Don’t need to insert where expression is already available. 

•  INSERT[i] = PPOUT[i] ∩ (¬PPIN[i] ∪ KILL[i]) ∩ ¬AVOUT[i] 

–  Remove (upwards-exposed) computations where PPIN=1. 

•  DELETE[i] = PPIN[i] ∩ ANTLOC[i] 
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Where Do We Want to Insert?  Example 
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Formulating the Problem 

•  PPOUT: we want to place at output of this block only if 
–  we want to place at entry of all successors 

•  PPIN: we want to place at input of this block only if (all of): 
–  we have a local computation to place, or a placement at the end of 

this block which we can move up 
–  we want to move computation to output of all predecessors where 

expression is not already available (don’t insert at input) 
–  we can gain something by placing it here (PAVIN) 

•  Forward or Backward?  

–  BOTH!  

•  Problem is bidirectional, but lattice {0, 1} is finite, so 
–  as long as transfer functions are monotone, it converges. 
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Computing “Placement Possible” 

•  PPOUT: we want to place at output of this block only if 
–  we want to place at entry of all successors 

•  PPOUT[i] =  

•  PPIN: we want to place at start of this block only if (all of): 
–  we have a local computation to place, or a placement at the end of 

this block which we can move up 
–  we want to move computation to output of all predecessors where 

expression is not already available (don’t insert at input) 
–  we gain something by moving it up (PAVIN heuristic) 

•  PPIN[i] =  
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{	
        0                      i = entry 

∩	
  	
  	
  PPIN[s]         otherwise 
s ∈ succ(i) 

{	
   0                                         i = exit 
([ANTLOC[i] ∪ (PPOUT[i] – KILL[i])] 
 ∩             (PPOUT[p] ∪ AVOUT[p])       otherwise 
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“Placement Possible” Example 1 
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“Placement Possible” Example 2 
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“Placement Possible” Correctness 

•  Convergence of analysis: transfer functions are monotone. 
•  Safety: Insert only if anticipated. 

                 PPIN[i] ⊆ (PPOUT[i] – KILL[i]) ∪ ANTLOC[i]  

                PPOUT[i] =  

•  INSERT ⊆ PPOUT ⊆ ANTOUT, so insertion is safe. 

•  Performance: never increase the # of computations on any path  
•  DELETE = PPIN ∩ ANTLOC 
•  On every path from an INSERT, there is a DELETE. 
•  The number of computations on a path does not increase. 
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        0                      i = exit 

∩	
  	
  	
  PPIN[s]         otherwise 
s ∈ succ(i) 
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Morel-Renvoise Limitations 

•  Movement usefulness tied to PAVIN heuristic 
–  Makes some useless moves, might increase register lifetimes: 

–  Doesn’t find some eliminations: 

 

•  Bidirectional data flow difficult to compute. 
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Related Work 

•  Don’t need heuristic 
–  Dhamdhere, Drechsler-Stadel, Knoop,et.al. 
–  use restricted flow graph or allow edge placements. 

•  Data flow can be separated into unidirectional passes 
–  Dhamdhere, Knoop, et. al. 

•  Improvement still tied to accuracy of computational model 
–  Assumes performance depends only on the number of computations 

along any path. 
–  Ignores resource constraint issues: register allocation, etc. 
–  Knoop, et.al. give “earliest” and “latest” placement algorithms which 

begin to address this. 
•  Further issues:  

–  more than one expression at once, strength reduction, redundant 
assignments, redundant stores. 
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