
Carnegie Mellon

Lecture 10

Partial Redundancy Elimination

•  Global code motion optimization
•  Remove partially redundant expressions
•  Loop invariant code motion
•  Can be extended to do Strength Reduction

•  No loop analysis needed
•  Bidirectional flow problem

Todd C. Mowry 15-745: Partial Redundancy Elim. 1

Carnegie Mellon

References

1.  E. Morel and C. Renvoise, “Global Optimization by Suppression of Partial Redundancies,”
CACM 22 (2), Feb. 1979, pp. 96-103.

2.  Knoop, Rüthing, Steffen, “Lazy Code Motion,” PLDI 92.
3.  F. Chow, A Portable Machine-Independent Global Optimizer--Design and Measurements.

Stanford CSL memo 83-254.
4.  Dhamdhere, Rosen, Zadeck, “How to Analyze Large Programs Efficiently and Informatively,”

PLDI 92.
5.  K. Drechsler, M. Stadel, “A Solution to a Problem with Morel and Renvoise’s ‘Global

Optimization by Suppression of Partial Redundancies,’” ACM TOPLAS 10 (4), Oct. 1988, pp.
635-640.

6.  D. Dhamdhere, “Practical Adaptation of the Global Optimization Algorithm of Morel and
Renvoise,” ACM TOPLAS 13 (2), April 1991.

7.  D. Dhamdhere, “A Fast Algorithm for Code Movement Optimisation,” SIGPLAN Not. 23 (10),
1988, pp. 172-180.

8.  S. Joshi, D. Dhamdhere, “A composite hoisting --- strength reduction transformation for
global program optimisation,” International Journal of Computer Mathematics, 11 (1982), pp.
21-41, 111-126.

Todd C. Mowry 15-745: Partial Redundancy Elim. 2

Carnegie Mellon

Redundancy

•  A Common Subexpression is a Redundant Computation

•  Occurrence of expression E at P is redundant if E is available there:
–  E is evaluated along every path to P, with no operands redefined

since.
•  Redundant expression can be eliminated

Todd C. Mowry 15-745: Partial Redundancy Elim. 3

t1 = a + b

t2 = a + b

t3 = a + b

Carnegie Mellon

Partial Redundancy

•  Partially Redundant Computation

•  Occurrence of expression E at P is partially redundant if E is partially
available there:
–  E is evaluated along at least one path to P, with no operands

redefined since.
•  Partially redundant expression can be eliminated if we can insert

computations to make it fully redundant.

Todd C. Mowry 15-745: Partial Redundancy Elim. 4

t1 = a + b

t3 = a + b

Carnegie Mellon

Loop Invariants are Partial Redundancies

•  Loop invariant expression is partially redundant

•  As before, partially redundant computation can be eliminated if we
insert computations to make it fully redundant.

•  Remaining copies can be eliminated through copy propagation or more
complex analysis of partially redundant assignments.

Todd C. Mowry 15-745: Partial Redundancy Elim. 5

t1 = a + b

a = …

Carnegie Mellon

Partial Redundancy Elimination

•  The Method:
1.  Insert Computations to make partially redundant expression(s) fully

redundant.
2.  Eliminate redundant expression(s).

•  Issues [Outline of Lecture]:
1.  What expression occurrences are candidates for elimination?
2.  Where can we safely insert computations?
3.  Where do we want to insert them?

•  For this lecture, we assume one expression of interest, a+b.
–  In practice, with some restrictions, can do many expressions in

parallel.

Todd C. Mowry 15-745: Partial Redundancy Elim. 6

Carnegie Mellon

Which Occurrences Might Be Eliminated?

•  In CSE,
–  E is available at P if it is previously evaluated along every path to P,

with no subsequent redefinitions of operands.
–  If so, we can eliminate computation at P.

•  In PRE,
–  E is partially available at P if it is previously evaluated along at

least one path to P, with no subsequent redefinitions of operands.
–  If so, we might be able to eliminate computation at P, if we can

insert computations to make it fully redundant.
•  Occurrences of E where E is partially available are candidates for

elimination.

Todd C. Mowry 15-745: Partial Redundancy Elim. 7

Carnegie Mellon

Finding Partially Available Expressions

•  Forward flow problem
–  Lattice = { 0, 1 }, meet is union (∪), Top = 0 (not PAVAIL), entry = 0

•  PAVOUT[i] = (PAVIN[i] – KILL[i]) ∪ AVLOC[i]

•  PAVIN[i] =

•  For a block,
•  Expression is locally available (AVLOC) if downwards exposed.
•  Expression is killed (KILL) if any assignments to operands.

Todd C. Mowry 15-745: Partial Redundancy Elim. 8

{	
 0 i = entry

∪	
 	
 	
 PAVOUT[p] otherwise
p ∈ preds(i)

 … = a + b
 a = …

 a = …
 … = a + b

Carnegie Mellon

Partial Availability Example

•  For expression a+b.

•  Occurrence in loop is partially redundant.

Todd C. Mowry 15-745: Partial Redundancy Elim. 9

t1 = a + b

a = …

a = …
t2 = a + b

KILL = 1
AVLOC = 0

KILL = 0
AVLOC = 1

KILL = 1
AVLOC = 1

PAVIN =
PAVOUT =

PAVIN =
PAVOUT =

PAVIN =
PAVOUT =

Carnegie Mellon

Where Can We Insert Computations?

•  Safety: never introduce a new expression along any path.

–  Insertion could introduce exception, change program behavior.
–  If we can add a new basic block, can insert safely in most cases.
–  Solution: insert expression only where it is anticipated.

•  Performance: never increase the # of computations on any path.
–  Under simple model, guarantees program won’t get worse.
–  Reality: might increase register lifetimes, add copies, lose.

Todd C. Mowry 15-745: Partial Redundancy Elim. 10

t1 = a + b

t3 = a + b

Carnegie Mellon

Finding Anticipated Expressions

•  Backward flow problem
–  Lattice = { 0, 1 }, meet is intersection (∩), top = 1 (ANT), exit = 0

•  ANTIN[i] = ANTLOC[i] ∪ (ANTOUT[i] - KILL[i])

•  ANTOUT[i] =

•  For a block,
•  Expression locally anticipated (ANTLOC) if upwards exposed.

Todd C. Mowry 15-745: Partial Redundancy Elim. 11

{	
 0 i = exit

∩	
 	
 	
 ANTIN[s] otherwise
s ∈ succ(i)

 … = a + b
 a = …

 a = …
 … = a + b

Carnegie Mellon

Anticipation Example

•  For expression a+b.

•  Expression is anticipated at end of first block.
•  Computation may be safely inserted there.

Todd C. Mowry 15-745: Partial Redundancy Elim. 12

t1 = a + b

a = …

a = …
t2 = a + b

KILL = 1
ANTLOC = 0

KILL = 0
ANTLOC = 1

KILL = 1
ANTLOC = 0

ANTIN =
ANTOUT =

ANTIN =
ANTOUT =

ANTIN =
ANTOUT =

Carnegie Mellon

Where Do We Want to Insert Computations?

•  Morel-Renvoise and variants: “Placement Possible”
–  Dataflow analysis shows where to insert:

•  PPIN = “Placement possible at entry of block or before.”
•  PPOUT = “Placement possible at exit of block or before.”

–  Insert at earliest place where PP = 1.
–  Only place at end of blocks,

•  PPIN really means “Placement possible or not necessary in each
predecessor block.”

–  Don’t need to insert where expression is already available.

•  INSERT[i] = PPOUT[i] ∩ (¬PPIN[i] ∪ KILL[i]) ∩ ¬AVOUT[i]

–  Remove (upwards-exposed) computations where PPIN=1.

•  DELETE[i] = PPIN[i] ∩ ANTLOC[i]

Todd C. Mowry 15-745: Partial Redundancy Elim. 13

Carnegie Mellon

Where Do We Want to Insert? Example

Todd C. Mowry 15-745: Partial Redundancy Elim. 14

t1 = a + b

a = …

a = …
t2 = a + b

PPIN =
PPOUT =

PPIN =
PPOUT =

PPIN =
PPOUT =

Carnegie Mellon

Formulating the Problem

•  PPOUT: we want to place at output of this block only if
–  we want to place at entry of all successors

•  PPIN: we want to place at input of this block only if (all of):
–  we have a local computation to place, or a placement at the end of

this block which we can move up
–  we want to move computation to output of all predecessors where

expression is not already available (don’t insert at input)
–  we can gain something by placing it here (PAVIN)

•  Forward or Backward?

–  BOTH!

•  Problem is bidirectional, but lattice {0, 1} is finite, so
–  as long as transfer functions are monotone, it converges.

Todd C. Mowry 15-745: Partial Redundancy Elim. 15

Carnegie Mellon

Computing “Placement Possible”

•  PPOUT: we want to place at output of this block only if
–  we want to place at entry of all successors

•  PPOUT[i] =

•  PPIN: we want to place at start of this block only if (all of):
–  we have a local computation to place, or a placement at the end of

this block which we can move up
–  we want to move computation to output of all predecessors where

expression is not already available (don’t insert at input)
–  we gain something by moving it up (PAVIN heuristic)

•  PPIN[i] =

Todd C. Mowry 15-745: Partial Redundancy Elim. 16

{	
 0 i = entry

∩	
 	
 	
 PPIN[s] otherwise
s ∈ succ(i)

{	
 0 i = exit
([ANTLOC[i] ∪ (PPOUT[i] – KILL[i])]
 ∩ (PPOUT[p] ∪ AVOUT[p]) otherwise

 ∩	
 PAVIN[i])
p ∈ preds(i)
∩	

Carnegie Mellon

“Placement Possible” Example 1

Todd C. Mowry 15-745: Partial Redundancy Elim.
17

t1 = a + b

a = …

a = …
t2 = a + b

KILL = 1
AVLOC = 0
ANTLOC = 0

KILL = 0
AVLOC = 1
ANTLOC = 1

KILL = 1
AVLOC = 1
ANTLOC = 0

PAVIN = 0
PAVOUT = 0
AVOUT = 0

PAVIN = 1
PAVOUT = 1
AVOUT = 1

PAVIN = 1
PAVOUT = 1
AVOUT = 1

PPIN =

PPOUT =

PPIN =

PPOUT =

PPIN =

PPOUT =

Carnegie Mellon

“Placement Possible” Example 2

Todd C. Mowry 15-745: Partial Redundancy Elim.
18

a = …

a = …
t1 = a + b

t2 = a + b

KILL = 1
AVLOC = 1
ANTLOC = 0

KILL = 1
AVLOC = 0
ANTLOC = 0

KILL = 0
AVLOC = 1
ANTLOC = 1

PAVIN = 0
PAVOUT = 1
AVOUT = 1

PAVIN = 0
PAVOUT = 0
AVOUT = 0

PAVIN = 1
PAVOUT = 1
AVOUT = 1

PPIN =

PPOUT =

PPIN =

PPOUT =

PPIN =

PPOUT =

Carnegie Mellon

“Placement Possible” Correctness

•  Convergence of analysis: transfer functions are monotone.
•  Safety: Insert only if anticipated.

 PPIN[i] ⊆ (PPOUT[i] – KILL[i]) ∪ ANTLOC[i]

 PPOUT[i] =

•  INSERT ⊆ PPOUT ⊆ ANTOUT, so insertion is safe.

•  Performance: never increase the # of computations on any path
•  DELETE = PPIN ∩ ANTLOC
•  On every path from an INSERT, there is a DELETE.
•  The number of computations on a path does not increase.

Todd C. Mowry 15-745: Partial Redundancy Elim. 19

{	
 0 i = exit

∩	
 	
 	
 PPIN[s] otherwise
s ∈ succ(i)

Carnegie Mellon

Morel-Renvoise Limitations

•  Movement usefulness tied to PAVIN heuristic
–  Makes some useless moves, might increase register lifetimes:

–  Doesn’t find some eliminations:

•  Bidirectional data flow difficult to compute.

Todd C. Mowry 15-745: Partial Redundancy Elim. 20

 a+b

 a+b

 a+b

 a+b

 a+b

Carnegie Mellon

Related Work

•  Don’t need heuristic
–  Dhamdhere, Drechsler-Stadel, Knoop,et.al.
–  use restricted flow graph or allow edge placements.

•  Data flow can be separated into unidirectional passes
–  Dhamdhere, Knoop, et. al.

•  Improvement still tied to accuracy of computational model
–  Assumes performance depends only on the number of computations

along any path.
–  Ignores resource constraint issues: register allocation, etc.
–  Knoop, et.al. give “earliest” and “latest” placement algorithms which

begin to address this.
•  Further issues:

–  more than one expression at once, strength reduction, redundant
assignments, redundant stores.

Todd C. Mowry 15-745: Partial Redundancy Elim. 21

