
15-745: Optimizing Compilers

Spring 2013

Syllabus

1 Course Details at a Glance

Lectures: TWR 9:00am-10:20am, GHC 4303
Instructor: Todd C. Mowry, GHC 9123, 268-3725, tcm@cs.cmu.edu
TA: Luke Zarko, zarko@cmu.edu
Web Page: http://www.cs.cmu.edu/afs/cs/academic/class/15745-s13/www/

Handouts: /afs/cs.cmu.edu/academic/class/15745-s13/public

Discussion: http://www.piazza.com/cmu/spring2013/15745

2 Textbook

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley, 2006. ISBN: 978-0321486813. (NOTE: It is important
to use the 2nd Edition, rather than an earlier edition.)

3 Course Overview and Objectives

Theoretical and practical aspects of building optimizing compilers that effectively exploit modern
architectures. The course will begin with the fundamentals of compiler optimization, and will build
upon these fundamentals to address issues in state-of-the-art commercial and research machines.
Topics include: intermediate representations, basic blocks and flow graphs, data flow analysis,
partial evaluation and redundancy elimination, loop optimizations, register allocation, instruction
scheduling, interprocedural analysis, memory hierarchy optimizations, extracting parallelism, and
dynamic optimizations. Students will implement significant optimizations within the framework of
a modern research compiler.

4 Prerequisites

This course is not intended to be your first compilers course: it is geared toward students who have
already had such a course as undergraduates. If you have not taken a compilers course already,
it is still possible to take this course provided that you are willing to spend some additional time
catching up on your own. It will also be helpful if you have some familiarity with the features
of modern processor architectures (e.g., the memory hierarchy, pipelining, branch prediction, and
instruction issue mechanisms). If you feel uncertain about whether you are adequately prepared to
take this class, please discuss this with the instructor.

1



5 If You Are Not a CS or ECE Graduate Student

If you are not a graduate student in either the CS or ECE program, you need permission to take
this class. If you have not already done so, send a message to the instructor stating your status,
why you want to take the class, and if you want to take the class for credit or as an auditor.

6 Course Work

Grades will be based on homeworks, a research project, an exam, and class participation.

Homeworks: There will be roughly three homework assignments. Each assignment involves a
non-trivial amount of programming. Please work in groups of two on the assignments. (If
you have difficulty finding a partner, please let us know, and we will help you find someone.)
Turn in a single writeup per group.

Project: A major focus of this course is the project. We prefer that you work in groups of two
on the project, although groups of up to three may be permitted depending on the scale of
project (ask the instructor for permission before forming a group of three). The project is
intended to be a scaled-down version of a real research project. The project must involve
an experimental component—i.e. it is not simply a paper and pencil exercise. We encourage
you to come up with your own topic for your project, although we will be posting suggested
projects to the class web page at a future date. You will have six weeks to work on the project.
You will present your findings in a written report (the collected reports may be published as
a technical report at the end of the semester), and also during a poster session during the
last day of class. Start thinking about potential project ideas soon!

Exam: There will be one exam covering the earlier (and more fundamental) portion of the course
material. The exam will be closed book, closed notes.

Class Participation: In general, we would like everyone to do their part to make this an enjoyable
interactive experience (one-way communication is no fun). Hence in addition to attending
class, we would like you to actively participate by asking questions, joining in our discussions,
etc. Three classes are set aside entirely for student-led in-class discussions on active areas of
research and innovation in compiler optimization. All students are expected to lead one of
these discussions.

6.1 Grading Policy

To pass this course, you are expected to demonstrate competence in the major topics covered in
the course. Your overall grade is determined as follows:

Exam: 35%
Homework: 20%
Project: 35%
Class Participation: 10%

Late assignments will not be accepted without prior arrangement.

7 Schedule

Table 1 shows the tentative schedule. There might be some revisions.

2



Table 1: 15-745, Spring 2013.

Class Date Day Topic Reading Assignments

1 1/15 Tue Overview of Optimizations 9.1
2 1/16 Wed Local Optimizations 8.4-8.5
3 1/17 Thu The LLVM Compiler: Getting Started llvm.org/docs #1 Out
4 1/22 Tue Data Flow Analysis: Examples 9.2
5 1/23 Wed Data Flow Analysis: Theory 9.3
6 1/24 Thu The LLVM Compiler: Further Details llvm.org/docs

7 1/29 Tue Common Subexpressions, Constant Folding 9.2.6, 9.4
8 1/30 Wed Loop Invariant Code Motion 9.6
9 1/31 Thu Induction Variables, Strength Reduction 9.1.8 #1 Due, #2 Out
10 2/5 Tue Partial Redundancy Elimination 9.5-9.5.2
11 2/6 Wed Lazy Code Motion 9.5.3-9.5.6
12 2/7 Thu Region-Based Analysis 9.7
13 2/12 Tue Intro to Static Single Assignment (SSA) 6.2.4
14 2/13 Wed SSA-Style Optimizations
15 2/14 Thu Register Allocation: Coloring & Spilling 8.8 #2 Due, #3 Out
16 2/19 Tue Register Allocation: Coalescing
17 2/20 Wed Intro to Instruction Scheduling 10.1-10.2
18 2/21 Thu List Scheduling, Global Scheduling 10.3-10.4
19 2/26 Tue Software Pipelining 10.5
20 2/27 Wed Pointer Analysis 12.4, 12.6-12.7
21 2/28 Thu Dynamic Code Optimization
22 3/5 Tue Recent Research on Optimization I handouts
23 3/6 Wed Recent Research on Optimization II handouts
24 3/7 Thu Recent Research on Optimization III handouts #3 Due

Spring Break
3/19 Tue Meetings to discuss Project Proposal ideas.

25 3/20 Wed Memory Hierarchy Optimizations 12.1.4-12.1.5, 12.2
26 3/21 Thu Locality Analysis 12.3-12.5 Project Proposal
27 3/26 Tue Prefetching 12.12.4
28 3/27 Wed Array Dependence Analysis 12.1.1-3, 12.6-7
29 3/28 Thu Thread-Level Speculation

4/4 Thu Exam
4/18 Thu Project Milestone
5/1 Wed Project Due
5/2 Thu Project Poster Session

3


