15-745: Optimizing Compilers
Spring 2013
Syllabus

1 Course Details at a Glance

Lectures: TWR 9:00am-10:20am, GHC 4303

Instructor: Todd C. Mowry, GHC 9123, 268-3725, tcm@cs.cmu.edu

TA: Luke Zarko, zarko@cmu . edu

Web Page: http://www.cs.cmu.edu/afs/cs/academic/class/15745-s13/www/
Handouts: /afs/cs.cmu.edu/academic/class/15745-s13/public

Discussion: http://www.piazza.com/cmu/spring2013/15745

2 Textbook

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley, 2006. ISBN: 978-0321486813. (NOTE: It is important
to use the 2nd Edition, rather than an earlier edition.)

3 Course Overview and Objectives

Theoretical and practical aspects of building optimizing compilers that effectively exploit modern
architectures. The course will begin with the fundamentals of compiler optimization, and will build
upon these fundamentals to address issues in state-of-the-art commercial and research machines.
Topics include: intermediate representations, basic blocks and flow graphs, data flow analysis,
partial evaluation and redundancy elimination, loop optimizations, register allocation, instruction
scheduling, interprocedural analysis, memory hierarchy optimizations, extracting parallelism, and
dynamic optimizations. Students will implement significant optimizations within the framework of
a modern research compiler.

4 Prerequisites

This course is not intended to be your first compilers course: it is geared toward students who have
already had such a course as undergraduates. If you have not taken a compilers course already,
it is still possible to take this course provided that you are willing to spend some additional time
catching up on your own. It will also be helpful if you have some familiarity with the features
of modern processor architectures (e.g., the memory hierarchy, pipelining, branch prediction, and
instruction issue mechanisms). If you feel uncertain about whether you are adequately prepared to
take this class, please discuss this with the instructor.

5 If You Are Not a CS or ECE Graduate Student

If you are not a graduate student in either the CS or ECE program, you need permission to take
this class. If you have not already done so, send a message to the instructor stating your status,
why you want to take the class, and if you want to take the class for credit or as an auditor.

6 Course Work
Grades will be based on homeworks, a research project, an exam, and class participation.

Homeworks: There will be roughly three homework assignments. Each assignment involves a
non-trivial amount of programming. Please work in groups of two on the assignments. (If
you have difficulty finding a partner, please let us know, and we will help you find someone.)
Turn in a single writeup per group.

Project: A major focus of this course is the project. We prefer that you work in groups of two
on the project, although groups of up to three may be permitted depending on the scale of
project (ask the instructor for permission before forming a group of three). The project is
intended to be a scaled-down version of a real research project. The project must involve
an experimental component—i.e. it is not simply a paper and pencil exercise. We encourage
you to come up with your own topic for your project, although we will be posting suggested
projects to the class web page at a future date. You will have six weeks to work on the project.
You will present your findings in a written report (the collected reports may be published as
a technical report at the end of the semester), and also during a poster session during the
last day of class. Start thinking about potential project ideas soon!

Exam: There will be one exam covering the earlier (and more fundamental) portion of the course
material. The exam will be closed book, closed notes.

Class Participation: In general, we would like everyone to do their part to make this an enjoyable
interactive experience (one-way communication is no fun). Hence in addition to attending
class, we would like you to actively participate by asking questions, joining in our discussions,
etc. Three classes are set aside entirely for student-led in-class discussions on active areas of
research and innovation in compiler optimization. All students are expected to lead one of
these discussions.

6.1 Grading Policy

To pass this course, you are expected to demonstrate competence in the major topics covered in
the course. Your overall grade is determined as follows:

Exam: 35%
Homework: 20%
Project: 35%

Class Participation: 10%
Late assignments will not be accepted without prior arrangement.

7 Schedule

Table 1 shows the tentative schedule. There might be some revisions.

Table 1: 15-745, Spring 2013.

’ Class \ Date \ Day \ Topic \ Reading \ Assignments

1 1/15 | Tue | Overview of Optimizations 9.1

2 1/16 | Wed | Local Optimizations 8.4-8.5

3 1/17 | Thu | The LLVM Compiler: Getting Started 1lvm.org/docs #1 Out

4 1/22 | Tue | Data Flow Analysis: Examples 9.2

5 1/23 | Wed | Data Flow Analysis: Theory 9.3

6 1/24 | Thu | The LLVM Compiler: Further Details 1lvm.org/docs

7 1/29 | Tue | Common Subexpressions, Constant Folding 9.2.6, 94

8 1/30 | Wed | Loop Invariant Code Motion 9.6

9 1/31 | Thu | Induction Variables, Strength Reduction 9.1.8 #1 Due, #2 Out

10 2/5 | Tue | Partial Redundancy Elimination 9.5-9.5.2

11 2/6 | Wed | Lazy Code Motion 9.5.3-9.5.6

12 2/7 | Thu | Region-Based Analysis 9.7

13 2/12 | Tue | Intro to Static Single Assignment (SSA) 6.2.4

14 | 2/13 | Wed | SSA-Style Optimizations

15 2/14 | Thu | Register Allocation: Coloring & Spilling 8.8 #2 Due, #3 Out

16 2/19 | Tue | Register Allocation: Coalescing

17 2/20 | Wed | Intro to Instruction Scheduling 10.1-10.2

18 2/21 | Thu | List Scheduling, Global Scheduling 10.3-10.4

19 2/26 | Tue | Software Pipelining 10.5

20 2/27 | Wed | Pointer Analysis 12.4, 12.6-12.7

21 2/28 | Thu | Dynamic Code Optimization

22 3/5 | Tue | Recent Research on Optimization I handouts

23 3/6 | Wed | Recent Research on Optimization IT handouts

24 3/7 | Thu | Recent Research on Optimization 111 handouts #3 Due

Spring Break

3/19 | Tue | Meetings to discuss Project Proposal ideas.

25 3/20 | Wed | Memory Hierarchy Optimizations 12.1.4-12.1.5, 12.2

26 3/21 | Thu | Locality Analysis 12.3-12.5 Project Proposal

27 | 3/26 | Tue | Prefetching 12.124

28 3/27 | Wed | Array Dependence Analysis 12.1.1-3, 12.6-7

29 3/28 | Thu | Thread-Level Speculation
4/4 | Thu | Exam
4/18 | Thu Project Milestone
5/1 | Wed Project Due
5/2 | Thu | Project Poster Session

