
CS 745, Spring 2012

Homework Assignment 1

Assigned: Thursday, January 19
Due: Thursday, February 2, 9:00AM

Welcome to the Spring 2012 edition of Optimizing Compilers (15-745). We will be using the
Low Level Virtual Machine (LLVM) Compiler infrastructure from University of Illinois Urbana-
Champaign (UIUC) for our programming assignments. While LLVM is currently supported on
a number of hardware platforms, we expect the assignments to be completed on x86 machines,
since that is where they will be graded. Although LLVM works quite well on both Mac OS X
and Windows, it is recommended that assignments be done in Linux, to increase the chances of
getting technical support from the teaching staff.

The objective of this first assignment is to introduce you to LLVM and some ways that it could
be used to make your programs run faster. In particular, you will use LLVM to learn interesting
properties about your program and to perform local optimizations.

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members.

Logistics

All clarifications (if any) to this assignment will be posted on the class discussion board on
Piazza. Any revisions will be uploaded to the “assignments” page on the class web page.

In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15745-s12/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst1.

1 Install LLVM

First download, install, and build LLVM 3.0 source code from http:://llvm.org. The reason to
build LLVM from source is that pre-built binaries will not contain the symbols that will make
it easier for you to debug your work. Download the LLVM-3.0 release rather than the head
release from SVN because the head release may contain more bugs than the release. To get
started, follow the instructions at http://llvm.org/docs/GettingStarted.html for your particular
machine configuration. You do not need to build the gcc and g++ frontends from source,
instead follow the provided instructions to install pre-built binaries. Be careful not to overwrite
the current gcc install on your system (either /usr/bin/gcc or /usr/local/bin/gcc), rather install
your LLVM gcc in a private directory and update your PATH environment variable appropriately
so that you have llvm-gcc, llvm-g++, opt, etc., in your PATH. Note that in order to use
a debugger on the LLVM binaries you will need to pass —enable-debug-runtime
–disable-optimized to the configure script.

1

http://piazza.com

@g = common global i32 0

define i32 @g_incr(i32 %c) nounwind {
entry:
 %0 = load i32* @g, align 4
 %1 = add nsw i32 %0, %c
 store i32 %1, i32* @g, align 4
 ret i32 undef
}

define i32 @loop(i32 %a, i32 %b, i32 %c) nounwind {
entry:
 %0 = icmp slt i32 %a, %b
 %1 = load i32* @g, align 4
 br i1 %0, label %bb.nph, label %bb2

bb.nph: ; preds = %entry
 %tmp = sub i32 %b, %a
 %tmp7 = mul i32 %tmp, %c
 %tmp8 = add i32 %1, %tmp7
 store i32 %tmp8, i32* @g, align 4
 ret i32 %tmp8

bb2: ; preds = %entry
 ret i32 %1
}

(b)

int g;
int g_incr (int c)
{
 g += c;
}
int loop (int a, int b, int c)
{
 int i;
 int ret = 0;
 for (i = a; i < b; i++) {
 g_incr (c);
 }
 return ret + g;
}

(a)

Figure 1: (a) A simple loop source code, and (b) its optimized LLVM bytecode.

Peruse through the documentation at http://llvm.org/docs. The LLVM Programmer’s Man-
ual (http://llvm.org/docs/ProgrammersManual.html) and Writing an LLVM Pass Tutorial
(http://llvm.org/docs/WritingAnLLVMPass.html) are particularly useful.

2 Create a Pass

The source code for your LLVM passes do not need to be inside the LLVM source tree. The Make-
file rules below will help you build your passes regardless of where your source code is, as long
as the LLVM that you have built is in your PATH (ie export PATH=/path/to/LLVM:$PATH).
Create a directory (e.g, named FunctionInfo), and copy FunctionInfo.cpp (provided with the
assignment) into the new directory. FunctionInfo.cpp contains a dummy LLVM pass for ana-
lyzing the functions in a program. Currently it only prints out “15-745 Functions Information
Pass”. In the next section, you will extend FunctionsInfo.cpp to print out more interesting
information. For now, we will use the dummy LLVM pass to demonstrate how to build and
run run LLVM passes on programs. First, create a Makefile to build the FunctionsInfo pass
as follows (these instructions assume that your passes are the only .cpp files in the directory.
Make sure that there are tabs on lines 6 and 8 below):

all: FunctionInfo.so

CXXFLAGS = -rdynamic $(shell llvm-config --cxxflags all) -g -O0

%.so: %.o

(CXX) -dylib -flat_namespace -shared $^ -o $@

clean:

rm -f *.o *~ *.so

2

(Note: you can also copy this code from ASSTDIR/FunctionInfo/Makefile.) Before moving
on to the next section, make sure you can run this dummy pass properly. Copy the loop.c source
code (shown in Figure 1(a)) from ASSTDIR/FunctionInfo/loop.c into your local directory.
Compile it to an optimized LLVM bytecode (loop.o) as follows:

llvm-gcc -O -emit-llvm -c loop.c

Inspect the generated bytecode using llvm-dis as follows:

llvm-dis loop.o

This will create a disassembly of the testcase named loop.o.ll that should look very similar to
Figure 1(b).

Now try running the dummy FunctionInfo pass on the bytecode using the opt command. (If
you did not compile with debug information, the shared library (FunctionInfo.so) will be in
the Release directory). Note the use of the command line flag “-function-info” to enable
this pass. (See if you can locate the declaration of this flag in FunctionInfo.cpp). Note that
you must provide the correct path to FunctionInfo.so. You can use ”./” if they are
in the same directory.

opt -load path/to/FunctionInfo.so -function-info loop.o -o out

If all goes well, “15745 Functions Information Pass” should be printed to stderr.

3 Meet The Functions

Program analysis is an important prerequisite to applying correct optimizations: i.e. without
breaking the code. For example, before the optimizer can remove some piece of code to make a
program run faster, it must examine other parts of the program to determine whether the code
is truly redundant. A compiler pass is the standard mechanism for analyzing and optimizing
programs.

You will now extend the dummy FunctionInfo pass from the previous section to learn in-
teresting properties about the functions in a program. Your pass should report the following
information about all functions that are used in a program:

1. Name.

2. Number of arguments.

3. Number of call sites (i.e. locations where this function is called).

4. Number of basic blocks.

5. Number of instructions.

To assist you in writing this pass, the expected output of running FunctionInfo on the optimized
bytecode (Figure 1(b)) is shown in Figure 1. As you can see, the output in Figure 1 is not
interesting, since loop.c is a trivial piece of code. It is therefore recommended that you debug
your pass with more complex source files, as you can imagine grading will be done with complex
programs. Feel free to handin your additional testing source files in a separate directory together
with your source code.

3

Name # Args # Calls # Blocks # Insts

g incr 1 0 1 4

loop 3 0 3 9

Table 1: Expected FunctionInfo output for the optimized bytecode of loop.c

4 Optimize The Block (New Dragon Book 8.5)

Now that you are an expert writing LLVM passes, it is time to write a pass for making programs
faster. You will implement optimizations on basic blocks as discussed in class. More details on
local optimizations are available in Chapter 8.5 of the new Dragon book. While there are many
types of local optimizations, we will keep things quite simple in this section and focus only on the
algebraic optimizations discussed in Section 8.5.4 of the book. Specifically, you will implement
the following local optimizations:

1. Algebraic identities: e.g, x + 0 = 0 + x = x

2. Constant folding: e.g, 2 * 4 => 8

3. Strength reductions: e.g, 2 * x => (x + x) or (x << 1)

4.1 Implementation Details

You should create a new LLVM pass named LocalOpts.cpp following the steps in Section 2.
While it is possible to implement more than one pass in the same directory or file, it is probably
much easier at this point to simply create a new LocalOpts directory in llvm/lib/Analysis.
Since the llvm-gcc optimizer performs local optimizations, your LocalOpts pass should be run
on unoptimized LLVM bytecodes. Unoptimized bytecode of loop.c can be prepared as follows:

llvm-gcc -O0 -emit-llvm -c loop.c

Now assuming the command line flag for enabling your local optimization pass is
-my-local-opts, then you can run your pass as follows:

opt -load llvm/Debug/lib/LocalOpts.so -my-local-opts loop.o -o out

In addition to transforming the bytecode, your pass should also print out a summary of the
optimizations it performed: e.g., how many constants were folded. We will provide toy source
files with unrealistic amounts of local optimization opportunities for you to debug your pass
in: ASSTDIR/LocalOpts/test-inputs. In addition to using these test inputs, we recommend
that you test your pass on more realistic programs.

4

5 Questions

5.1 CFG Basics

For the code provided below (i) find basic blocks (ii) build the CFG (Control Flow Graph). Be
sure to give your basic blocks clear labels (and label the original code to match).

x = 100

y = 0

goto L2

L1: y = x * y

if (x < 50) goto L2

y = x - y

goto L3

L2: y = x + y

L3: print(y)

if (y < 1000) goto L1

if (x <= 0) goto L5

L4: x = x - 1

goto L1

L5: return y

5.2 Available Expressions, New Dragon Book 9.2.6

An expression x op y is available at a point p if every path from the entry node to p evaluates x
op y, and after the last such evaluation prior to reaching p, there are no subsequent assignments
to x or y. For the available-expressions data-flow schema we say that a block kills expression x
op y if it assigns (or may assign) x or y and does not subsequently recompute x op y. A block
generates expression x op y if it definitely evaluates x op y and does not subsequently define x
or y.
Based on this definition and the corresponding data flow analysis description(See Table 2 from
New Dragon Book 9.2.7) perform Available Expressions analysis on the code in Figure 2.
In the tables below list the EVAL and KILL sets, and the final IN and OUT sets after AE is

Domain Direction Transfer Function Boundary

Sets of expressions Forwards genB ∪ (x− killB) OUT [entry] = �
Meet ∧ Equations Equations Initialize

∩ OUT [B] = fB(IN [B]) IN [B] =
∧

P,pred(B)OUT [P] OUT [B] = ∪

Table 2: Available Expressions Analysis.

performed. You may ignore expressions inside conditional statements (e.g., (z < c)).

5

Midterm ECE540 Pg. 5 of 12

f) Perform Available Expressions analysis on the following code. In the tables below list the

EVAL and KILL sets, and the final IN and OUT sets after AE is performed. You may
ignore expressions inside conditional statements (e.g., “(z > c) ?”).

entry

a = b + c
d = c * c
e = a * c
i = 1

b = d
f = b + c
y = i + 1
(c > d)?

c = 8
f = c * c

i = i + 1
(i < 100)?

exit

BB1

BB2

BB3

BB5

x = b + c
c = c * c

BB4

BB EVAL KILL

1 b+c, c*c, a*c a*c, i+1
2 b+c, i+1 b+c
3 c*c c*c, a*c, b+c
4 Φ c*c, b+c, a*c
5 Φ i+1

BB IN OUT
1 Φ b+c, c*c, a*c
2 Φ b+c, i+1
3 b+c, i+1 c*c, i+1
4 b+c, i+1 i+1
5 i+1 Φ

0.5 each Figure 2: Code for Available Expressions Analysis.

BB EVAL KILL

1

2

3

4

5

BB IN OUT

1

2

3

4

5

6

5.3 New Dataflow Analysis: Use-Without-Def

You have been hired to help develop a software analysis package that will detect bugs and errors
in programs. In particular, your job is to design a dataflow analysis pass specifically for finding
use-without-def errors (a use of a variable without it being previously defined). Your analysis
should be as simple as possible (i.e., it should not gather unnecessary information), and as fast
as possible. Your analysis will be plugged into a generic dataflow framework (e.g., New Dragon
Book 9.2-9.3).

1. What is the set of elements that your analysis operates on?

2. What is the direction of your analysis?

3. What is your transfer function? Be sure to clearly define any other sets that your transfer
function uses (eg., GEN or KILL etc).

4. What is your meet operator? Give the equation that uses the meet operator.

5. To what value do you initialize exit and/or entry?

6. To what values do you initialize the in or out sets?

7. Does the order that your analysis visits basic blocks matter? What order would you
implement and why?

8. Will your analysis converge? Why (in words, not a proof)?

7

9. Clearly describe in pseudo-code an algorithm that uses the result of your analysis to
identify use-without-def errors

8

6 Hand In

Electronic submission:

• The source code for your passes (FunctionInfo and LocalOpts), the associated
Makefiles, and a README describing how to build and run them. Do this by cre-
ating a tar file with the last name of at least one of your group members in the
filename, and copying this tar file into the directory

/afs/cs.cmu.edu/academic/class/15745-s12/public/asst/asst1/handin

Include as comments near the beginning of your source files the identities of all
members of your group. Also remember to do a good job of commenting your code.

Hard-copy submission:

1. A report that briefly describes the implementations of both passes.

2. A listing of your source code.

3. Any additional tests that you used for verification of your passes.

4. Answers to the questions in Section 5.

9

	Install LLVM
	Create a Pass
	Meet The Functions
	Optimize The Block (New Dragon Book 8.5)
	Implementation Details

	Questions
	CFG Basics
	Available Expressions, New Dragon Book 9.2.6
	New Dataflow Analysis: Use-Without-Def

	Hand In

