
1

Lecture 10

Region Based AnalysisRegion-Based Analysis

I. Basic Idea
II. Algorithm
III. Optimization and Complexity
IV Comparing region-based analysis with iterative

Carnegie Mellon

IV. Comparing region based analysis with iterative
algorithms

Reading: ALSU 9.7

Todd C. Mowry 15-745: Region-Based Analysis 1

Motivation for Studying Region-Based Analysis

• Exploit the structure of block-structured programs in data flow
• Tie in several concepts studied:

– Use of structure in induction variables, loop invariant
d b f h bl• motivated by nature of the problem

• This lecture: can we use structure for speed?
– Iterative algorithm for data flow

• This lecture: an alternative algorithm
– Reducibility

• all retreating edges of DFST are back edges
• reducible graphs converge quickly
• This lecture: algorithm exploits & requires reducibility

Carnegie Mellon

g p q y
• Usefulness in practice

– Faster for “harder” analyses
– Useful for analyses related to structure

• Theoretically interesting: better understanding of data flow

Todd C. Mowry15-745: Region-Based Analysis 2

I. Big Picture

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

B3 B1 B2 B4

Carnegie Mellon
Todd C. Mowry15-745: Region-Based Analysis 33

B3 B1 B2 B4

Basic Idea

• In Iterative Analysis:
• DEFINITION: Transfer function FB:

summarize effect from beginning to end of basic block B

• In Region-Based Analysis:
• DEFINITION: Transfer function FR,B:

summarize effect from beginning of R to end of basic block B

• Recursively
construct a larger region R from smaller regions
construct FR,B from transfer functions for smaller regions

until the program is one region

Carnegie Mellon

• Let P be the region for the entire program,
and v be initial value at entry node

– out[B] = FP,B (v)
– in [B] =  B’ out[B’], where B’ is a predecessor of B

Todd C. Mowry15-745: Region-Based Analysis 4

2

II. Algorithm

1. Operations on transfer functions

2. How to build nested regions?

3. How to construct transfer functions that correspond to the larger
regions?

Carnegie Mellon
Todd C. Mowry15-745: Region-Based Analysis 5

1. Operations on Transfer Functions

• Example: Reaching Definitions

• F(x) = Gen  (x - Kill)
F (F ()) G (F () Kill)• F2(F1(x)) = Gen2  (F1(x) - Kill2)

= Gen2  (Gen1  (x - Kill1)) - Kill2)
= Gen2  (Gen1 - Kill2)  (x - (Kill1  Kill2))

• F1(x)  F2(x) = Gen1  (x - Kill1)  Gen2  (x - Kill2)
= (Gen1  Gen2)  (x - (Kill1  Kill2))

F*() Fn()  0

Carnegie Mellon

• F*(x) ≤ Fn(x),  n  0
= x  F(x)  F(F(x))  ...
= x  (Gen  (x - Kill))  (Gen  ((Gen  (x - Kill)) - Kill))  ...
= Gen  (x - )

Todd C. Mowry15-745: Region-Based Analysis 6

2. Structure of Nested Regions (An Example)

• A region in a flow graph is a set of nodes that
– includes a header, which dominates all other nodes in a region

• T1-T2 rule (Hecht & Ullman)
1 R l• T1: Remove a loop

If n is a node with a loop, i.e. an edge n->n, delete that edge

• T2: Remove a vertex
If there is a node n that has a unique predecessor, m,
th n m m nsum n b

Carnegie Mellon

then m may consume n by
deleting n and making all successors of n be successors of m.

Todd C. Mowry15-745: Region-Based Analysis 7

Example

a

b c

• In reduced graph:
– each vertex represents a subgraph of original graph (a region).
– each edge represents an edge in original graph

• Limit flow graph: result of exhaustive application of T1 and T2

d

Carnegie Mellon

Limit flow graph: result of exhaustive application of T1 and T2
– independent of order of application.
– if limit flow graph has a single vertex  reducible

• Can define larger regions (e.g. Allen&Cocke’s intervals)
– simple regions  simple composition rules for transfer functions

Todd C. Mowry15-745: Region-Based Analysis 8

3

3. Transfer Functions for T2 Rule
R1 R

H1

R1 R
H

• Transfer function
FR,B: summarizes the effect from beginning of R to end of B

R2
H2

R2

Carnegie Mellon

,
FR,in(H2): summarizes the effect from beginning of R to beginning of H2
– Unchanged for blocks B in region R1 (FR,B = FR1,B)
– FR,in(H2) = P FR,P, where p is a predecessor of H2

– For blocks B in region R2: FR,B = FR2,B ·FR,in(H2)

Todd C. Mowry15-745: Region-Based Analysis 9

Transfer Functions for T1 Rule

R1

R

H

• Transfer Function FR B

Carnegie Mellon

R,B

– FR,in(H) = (P FR1,P) *, where p is a predecessor of H in R
– FR,B = FR1,B·FR,in(H)

Todd C. Mowry15-745: Region-Based Analysis 10

First Example

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3

R T1/T2 R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4

R1 T2 B2 FB1 FB1 FB2·FR1,in(B2)

R2 T2 R1 FB3 FR1,B1·FR2,in(R1) FR1,B2·FR2,in(R1) FB3

R3 T1 R2 (FR2B1FR2B2)* FR2 B1·FR3 in(R2) FR2 B2·FR3 in(R2) FR2 B3·FR3 in(R2)

Carnegie Mellon

• R: region name
• R’: region whose header will be subsumed

Todd C. Mowry15-745: Region-Based Analysis 11

R3 T1 R2 (FR2B1FR2B2) FR2,B1 FR3,in(R2) FR2,B2 FR3,in(R2) FR2,B3 FR3,in(R2)

R4 T2 B4 FR3B3FR3B2 FR3,B1 FR3,B2 FR3,B3 FB4·FR4,in(B4)

First Example

B1 B2 B4B3

R4

R1

R2

R3

R4

R3 B4

R2

R1

B1 B2

B3

R T1/T2 R’ FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4

R1 T2 B2 FB1 FB1 FB2·FR1,in(B2)

R2 T2 R1 FB3 FR1,B1·FR2,in(R1) FR1,B2·FR2,in(R1) FB3

R3 T1 R2 (FR2B1FR2B2)* FR2 B1·FR3 in(R2) FR2 B2·FR3 in(R2) FR2 B3·FR3 in(R2)

Carnegie Mellon

• R: region name
• R’: region whose header will be subsumed

Todd C. Mowry15-745: Region-Based Analysis 12

R3 T1 R2 (FR2B1FR2B2) FR2,B1 FR3,in(R2) FR2,B2 FR3,in(R2) FR2,B3 FR3,in(R2)

R4 T2 B4 FR3B3FR3B2 FR3,B1 FR3,B2 FR3,B3 FB4·FR4,in(B4)

4

III. Complexity of Algorithm
12345

1
2
3
4

R T1/T R’ F F F F F FR T1/T
2

R FR,in(R’) FR,B1 FR,B2 FR,B3 FR,B4 FR,B5

R1 T2 B2 FB2 FB1·FB2 FB2

R2 T2 R1 FB3 FR1,B1·FB3 FR1,B2·FB3 FB3

R3 T2 R2 FB4 FR2,B1·FB4 FR2,B2·FB4 FR2,B3·FB4 FB4

R4 T2 R3 FB5 FR3,B1·FB5 FR3,B2·FB5 FR3,B3·FB5 FB4·FB5 FB5

R FR4,in(R) B FR4,B
R4

Carnegie Mellon
Todd C. Mowry15-745: Region-Based Analysis 13

R4 I
R3 FB5·FR4,in(R4)

R2 FB4·FR4,in(R3)

R1 FB3·FR4,in(R2)

B1 FB2·FR4,in(R1)

B5 FB5·I
B4 FB4·FR4,in(R3)

B3 FB3·FR4,in(R2)

B2 FB2·FR4,in(R1)

B1 FB1·FR4,in(B1)

R3

B4 R2

R1

B2 B1

B3

B5

Optimization

• Let m = number of edges, n = number of nodes

• Ideas for optimization
– If we compute FR B for every region B is in, then it is very expensivef mp FR,B f y g , y p
– We are ultimately only interested in the entire region (E);

we need to compute only FE,B for every B.
• There are many common subexpressions between FE,B1, FE,B2, ...
• Number of FE,B calculated = m

– Also, we need to compute FR,in(R’), where R’ represents the region
whose header is subsumed.

• Number of FR,B calculated, where R is not final = n

Carnegie Mellon

• Total number of FR,B calculated: (m + n)
– Data structure keeps “header” relationship

• Practical algorithm: O(m log n)
• Complexity: O(m(m,n)),  is inverse Ackermann function

Todd C. Mowry15-745: Region-Based Analysis 14

Reducibility

1

• If no T1, T2 is applicable before graph is reduced to single node, then
split node and continue

• Worst case: exponential

2 3

Carnegie Mellon

p

• Most graphs (including GOTO programs) are reducible

Todd C. Mowry15-745: Region-Based Analysis 15

IV. Comparison with Iterative Data Flow

• Applicability
– Definitions of F* can make technique more powerful than iterative

algorithms
– Backward flow: reverse graph is not typically reducibleBackward flow: reverse graph is not typically reducible.

• Requires more effort to adapt to backward flow than iterative algorithm
– More important for interprocedural optimization

• Speed
– Irreducible graphs

• Iterative algorithm can process irreducible parts uniformly
• Serious “irreducibility” can be slow with region-based analysis

– Reducible graph & Cycles do not add information (common)
• Iterative: (depth + 2) passes

Carnegie Mellon

p p
depth is 2.75 average, independent of code length

• Region-based analysis: Theoretically almost linear, typically O(m log n)
– Reducible & Cycles add information

• Iterative takes longer to converge
• Region-based analysis remains the same

Todd C. Mowry15-745: Region-Based Analysis 16

