Lecture 10 Region-Based Analysis

- I. Basic Idea
- II. Algorithm
- III. Optimization and Complexity
- IV. Comparing region-based analysis with iterative algorithms

Reading: ALSU 9.7

Todd C. Mowry

15-745: Region-Based Analysis

15-745: Region-Based Analysis

Carnegie Mellon

Todd C. Mowry

I. Big Picture Carnegie Mellon

Motivation for Studying Region-Based Analysis • Exploit the structure of block-structured programs in data flow • Tie in several concepts studied:

- Use of structure in induction variables, loop invariant
- - · motivated by nature of the problem

 - This lecture: can we use structure for speed?
- Iterative algorithm for data flow
 - This lecture: an alternative algorithm
- Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - This lecture: algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for "harder" analyses
 - Useful for analyses related to structure
- · Theoretically interesting: better understanding of data flow

15-745: Region-Based Analysis

Todd C. Mowry

Basic Idea

- In Iterative Analysis:
 - DEFINITION: Transfer function F_B : summarize effect from beginning to end of basic block B
- In Region-Based Analysis:
 - DEFINITION: Transfer function F_{R,B}: summarize effect from beginning of R to end of basic block B
 - · Recursively

construct a larger region R from smaller regions construct F_{R,B} from transfer functions for smaller regions until the program is one region

- Let P be the region for the entire program, and v be initial value at entry node
 - $\text{ out[B]} = F_{PB}(v)$
 - in [B] = $\Lambda_{B'}$ out[B'], where B' is a predecessor of B

15-745: Region-Based Analysis

Carnegie Mellon Todd C. Mowry

II. Algorithm

- 1. Operations on transfer functions
- 2. How to build nested regions?
- 3. How to construct transfer functions that correspond to the larger regions?

15-745: Region-Based Analysis

Carnegie Mellon Todd C. Mowry

2. Structure of Nested Regions (An Example)

- A region in a flow graph is a set of nodes that
 - includes a header, which dominates all other nodes in a region
- T1-T2 rule (Hecht & Ullman)
 - T1: Remove a loop

If n is a node with a loop, i.e. an edge n->n, delete that edge

- T2: Remove a vertex
- If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

15-745: Region-Based Analysis

Carnegie Mellon

Todd C. Mowry

1. Operations on Transfer Functions

- Example: Reaching Definitions
- $F(x) = Gen \cup (x Kill)$
- $F_2(F_1(x)) = Gen_2 \cup (F_1(x) Kill_2)$ $= Gen_2 \cup (Gen_1 \cup (x - Kill_1)) - Kill_2)$ = $Gen_2 \cup (Gen_1 - Kill_2) \cup (x - (Kill_1 \cup Kill_2))$
- $F_1(x) \wedge F_2(x) = Gen_1 \cup (x Kill_1) \cup Gen_2 \cup (x Kill_2)$ = $(Gen_1 \cup Gen_2) \cup (x - (Kill_1 \cap Kill_2))$
- $F^*(x) \leq F^n(x), \forall n \geq 0$ $= x \cup F(x) \cup F(F(x)) \cup ...$
 - $= x \cup (Gen \cup (x Kill)) \cup (Gen \cup ((Gen \cup (x Kill)) Kill)) \cup ...$ $= Gen \cup (x - \emptyset)$

15-745: Region-Based Analysis

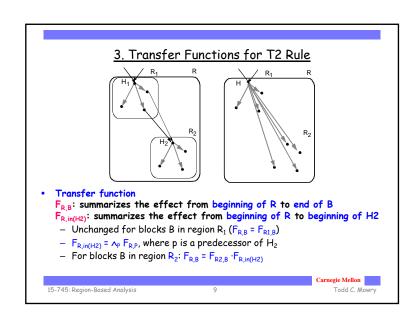
Todd C. Mowry

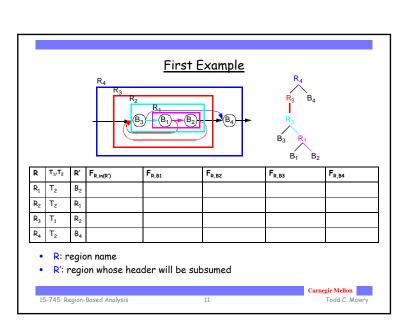
Example

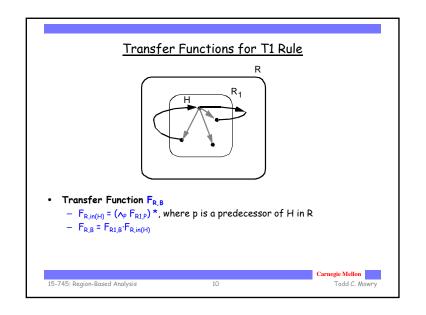
- In reduced graph:
 - each vertex represents a subgraph of original graph (a region).
 - each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application.
 - if limit flow graph has a single vertex → reducible
- Can define larger regions (e.g. Allen&Cocke's intervals)
 - simple regions → simple composition rules for transfer functions

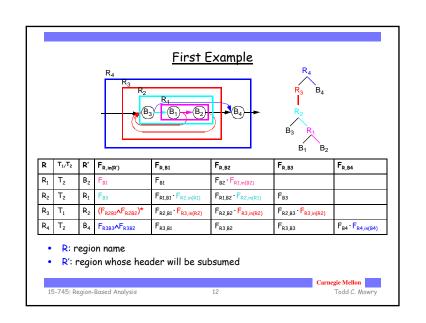
15-745: Region-Based Analysis

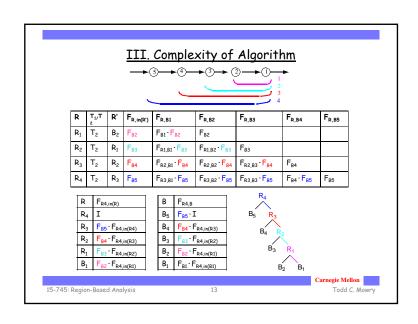
Carnegie Mellon Todd C. Mowry











Peducibility If no T1, T2 is applicable before graph is reduced to single node, then split node and continue Worst case: exponential Most graphs (including GOTO programs) are reducible Carnegie Mellon Todd C. Mowry

Optimization • Let m = number of edges, n = number of nodes • Ideas for optimization - If we compute $F_{R,B}$ for every region B is in, then it is very expensive - We are ultimately only interested in the entire region (E); we need to compute only $F_{E,B}$ for every B. • There are many common subexpressions between $F_{E,B1},\ F_{E,B2},...$ • Number of F_{E,B} calculated = m – Also, we need to compute $F_{R,in(R')}$, where R' represents the region whose header is subsumed. • Number of $F_{R,B}$ calculated, where R is not final = n • Total number of F_{RB} calculated: (m + n) - Data structure keeps "header" relationship • Practical algorithm: O(m log n) • Complexity: $O(m\alpha(m,n))$, α is inverse Ackermann function Carnegie Mellon 15-745: Region-Based Analysis Todd C. Mowry

IV. Comparison with Iterative Data Flow Applicability - Definitions of F* can make technique more powerful than iterative - Backward flow: reverse graph is not typically reducible. • Requires more effort to adapt to backward flow than iterative algorithm - More important for interprocedural optimization Speed - Irreducible graphs • Iterative algorithm can process irreducible parts uniformly • Serious "irreducibility" can be slow with region-based analysis Reducible graph & Cycles do not add information (common) • Iterative: (depth + 2) passes depth is 2.75 average, independent of code length • Region-based analysis: Theoretically almost linear, typically O(m log n) - Reducible & Cycles add information • Iterative takes longer to converge · Region-based analysis remains the same Carnegie Mellon 15-745: Region-Based Analysis Todd C. Mowry