
Optimizing Compilers: Global Common Subexpressions 1 T. Mowry

Carnegie Mellon

Lecture 6

Global Common Subexpression Elimination

I Available Expressions Analysis

II Eliminating CSEs

Reference: Muchnick 13.1

Optimizing Compilers: Global Common Subexpressions 2 T. Mowry

Carnegie Mellon

Global Common Subexpression

• Availability of an expression E at point P

• DEFINITION: Along every path to P in the flow graph:
• E must be evaluated at least once
• no variables in E redefined after the last evaluation

• Observations: E may have different values on different paths

add t1 = x, y

ldc t3 = 0
cpy x = t3
add t4 = x, y

sub t5 = a, b

sub t7 = a, b

add t8 = x, y

add t2 = c, d

ldc t6 = -1
cpy c = t6

add t9 = c, d

cpy m = t4

cpy m = t7

Optimizing Compilers: Global Common Subexpressions 3 T. Mowry

Carnegie Mellon

Formulating the Problem

• Domain:

• a bit vector,
a bit for each textually unique expression in the program

• Forward or Backward?

• Lattice Elements?

• Meet Operator?

• check: commutative, idempotent, associative

• Partial Ordering

• Top?

• Bottom?

• Boundary condition: entry/exit node?

• Initialization for iterative algorithm?

Optimizing Compilers: Global Common Subexpressions 4 T. Mowry

Carnegie Mellon

Transfer Functions

• Can use the same equation as reaching definitions

• out[b] = gen[b] U (in[b] - kill[b])

• Start with the transfer function for a single instruction

• When does the instruction generate an expression?

• When does it kill an expression?

• Calculate transfer functions for complete basic blocks

• Compose individual instruction transfer functions

Optimizing Compilers: Global Common Subexpressions 5 T. Mowry

Carnegie Mellon

Composing Transfer Functions

• Derive the transfer function for an entire block

• Since out1 = in2 we can simplify:

• out2 = gen2 U ((gen1 U (in1 - kill1)) - kill2)
out2 = gen2 U (gen1 - kill2) U (in1 - (kill1 U kill2))
out2 = gen2 U (gen1 - kill2) U (in1 - (kill2 U (kill1 - gen2)))

• Result

• gen = gen2 U (gen1 - kill2)

• kill = kill2 U (kill1 - gen2)

out1 = gen1 U (in1- kill1) = in2

out2 = gen2 U (in2 - kill2)

in1

1

2

Optimizing Compilers: Global Common Subexpressions 6 T. Mowry

Carnegie Mellon

II. Eliminating CSEs

• Available expressions (across basic blocks)

• provides the set of expressions available at the start of a block

• Value Numbering (within basic block)

• Initialize Values table with available expressions

• If CSE is an “ available expression” => transform the code

• Original destination may be:
• a temporary register
• overwritten
• different from the variables on other paths

• A solution: Copy the expression to a new variable at each
evaluation reaching the redundant use

• Textbook discusses another solution

Optimizing Compilers: Global Common Subexpressions 7 T. Mowry

Carnegie Mellon

III. Limitation: Textually Identical Expression

• Commutative operations

• sort the operands

add t1 = x, y

add t3 = x, y

add t2 = y, x

Optimizing Compilers: Global Common Subexpressions 8 T. Mowry

Carnegie Mellon

Further Improvements

• Examples

• Expressions with more than two operands

• Textually different expressions may be equivalent
add t1 = x, y
beq t1, t2, L1
cpy z = x
add t3 = z, y

add t1 = x, y

add t5 = x, y

add t3 = x, y
add t2 = t1,z add t4 = t3,z

add t6 = t5,z

Optimizing Compilers: Global Common Subexpressions 9 T. Mowry

Carnegie Mellon

Another Example

x = 1
y = 1

x = x+1
y = y+1
x = x+1
y = y+1

Optimizing Compilers: Global Common Subexpressions 10 T. Mowry

Carnegie Mellon

Summary

Reaching Definitions Available Expressions

Domain Sets of definitions Sets of expressions

Transfer function fb(x)
Generate ∪ Propagate

direction of function forward: out[b] = fb(in[b]) forward: out[b] = fb(in[b])

Generate Genb: exposed definitions Genb: exprs. evaluated

Propagate x - Killb: killed definitions x - Killb: exprs. killed

Merge operation ∪ (in[b]=∪ out[predecessors]) ∩(in[b]=∩out[predecessors])

Initialization out[entry] = out[entry] =

out[b] = out[b] = all expressions

∅ ∅
∅

Optimizing Compilers: Global Common Subexpressions 11 T. Mowry

Carnegie Mellon

Other Optimizations

Constant Propagation:

Copy Propagation:

Dead Code Elimination:

