Lecture 10

Interval Analysis

- I Basic Idea
- II Algorithm
- III Optimization and Complexity
- IV Comparing interval analysis with iterative algorithms

Reference: Muchnick 7.5-7.7, 8.8 Advanced readings (optional):

R. E. Tarjan, "A Unified Approach to Path Problems",

JACM 28 (3) July 1981, pp. 577-593.

R. E. Tarjan, "Fast Algorithms for Solving Path Problems",

JACM 28 (3) July 1981, pp. 594-614.

CS745: Interval Analysis 1 T. Mowry

Motivation for Studying Interval Analysis

- Exploit the structure of block-structured programs in data flow
- · Tie in several concepts studied
 - Use of structure in induction variables, loop invarient
 - · motivated by nature of the problem
 - This lecture: can we use structure for speed?
 - · Iterative algorithm for data flow
 - This lecture: an alternative algorithm
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - This lecture: algorithm exploits & requires reducibility
- Usefulness in practice
 - · Faster for "harder" analyses
 - · Useful for analyses related to structure
- Theoretically interesting better understanding of data flow

I. Big Picture

CS745: Interval Analysis 3 T. Mowry

Basic Idea

- In iterative analysis
 - DEFINITION: Transfer function F_B: summarize effect from beginning to end of basic block B
- In interval analysis
 - DEFINITION: Transfer function $F_{R,B}$: summarize effect from beginning of R to end of basic block B
 - Recursively
 construct a larger region R from smaller regions
 construct F_{R,B} from transfer functions for smaller regions
 until the program is one region
 - Let P be the region for the entire program, and v be initial value at entry node
 - out[B] = $F_{P.B}$ (v)
 - in [B] = \land B' out[B'], where B' is a predecessor of B

II. Algorithm

- (a) Operations on transfer functions
- (b) How to build nested regions?
- (c) How to construct transfer functions that correspond to the larger regions?

C\$745: Interval Analysis 5 T. Mowry

(a) Operations on Transfer Functions

• Example: Reaching Definitions

```
• F(x) = Gen \cup (x - Kill)

• F_2(F_1(x)) = Gen_2 \cup (F_1(x) - Kill_2)

= Gen_2 \cup (Gen_1 \cup (x - Kill_1)) - Kill_2)

= Gen_2 \cup (Gen_1 \cup (x - Kill_1)) - Kill_2)

= Gen_2 \cup (Gen_1 - Kill_2) \cup (x - (Kill_1 \cup Kill_2))
```

•
$$F_1(x) \wedge F_2(x) = Gen_1 \cup (x - Kill_1) \cup Gen_2 \cup (x - Kill_2)$$

= $(Gen_1 \cup Gen_2) \cup (x - (Kill_1 \cap Kill_2))$

```
• F^*(x) \leftarrow F^n(x), \forall n \geq 0
= x \cup F(x) \cup F(F(x)) \cup ...
= x \cup (Gen \cup (x - Kill)) \cup (Gen \cup ((Gen \cup (x - Kill)) - Kill)) \cup ...
= Gen \cup (x - \emptyset)
```

Carnegie Mellon

(b) Structure of Nested Regions (An example)

- · A region in a flow graph is a set of nodes that
 - includes a **header**, which dominates all other nodes in a region
- T1-T2 rule (Hecht & Ullman)
 - T1: Remove a loop
 If n is a node with a loop, i.e. an edge n->n, delete that edge
 - T2: Remove a vertex
 If there is a node n that has a unique predecessor, m, then m may consume n by deleting n and making all successors of n be successors of m.

CS745: Interval Analysis 7 T. Mowry

Example

- · In reduced graph:
 - each vertex represents a subgraph of original graph (a **region**).
 - · each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application.
 - if limit flow graph has a single vertex => reducible
- Can define larger regions (e.g. Allen&Cocke's intervals) simple regions=>simple composition rules for transfer functions

CS745: Interval Analysis 8 T. Mowry

(c) Transfer Functions for T2 Rule

• Transfer function

 $F_{R,B}\hbox{:}$ summarizes the effect from beginning of R to \mbox{end} of B $F_{R,in(H2)}\hbox{:}$ summarizes the effect from beginning of R to beginning of H2

- Unchanged for blocks B in region R_1 ($F_{R,B} = F_{R1,B}$)
- $F_{R,in(H2)} = A_P F_{R,P}$ where p is a predecessor of H_2
- For blocks B in region R_2 : $F_{R,B} = F_{R2,B} \cdot F_{R,in(H2)}$

CS745: Interval Analysis

9

Carnegie Mellon

T. Mowry

Transfer Functions for T1 Rule

• Transfer function F_{R,B}

- $F_{R,in(H)} = (\land P_{R1,P}) *$, where p is a predecessor of H in R
- $F_{R,B} = F_{R1,B} \cdot F_{R,in(H)}$

First Example

R	T_1/T_2	R'	$F_{R,in(R')}$	$F_{R,B1}$	$F_{R,B2}$	$F_{R,B3}$	$F_{R,B4}$
R_1	T ₂	B ₂	F _{B1}	F _{B1}	$F_{B2} \cdot F_{R1,in(B2)}$		
R_2	T ₂	R_1	F_{B3}	$F_{R1,B1} \cdot \mathbb{F}_{R2, \operatorname{in}(R1)}$	$F_{R1,B2} \cdot F_{R2,in(R1)}$	F _{B3}	
R_3	T_1	R_2	$(F_{R2B1} \land F_{R2B2})^*$	$F_{R2,B1} \cdot F_{R3,in(R2)}$	$F_{R2,B2} \cdot F_{R3,in(R2)}$	$F_{R2,B3} \cdot F_{R3,in(R2)}$	
R4	T ₂	B_4	F _{R3B3} F _{R3B2}	F _{R3,B1}	F _{R3,B2}	F _{R3,B3}	$F_{B4} \cdot F_{R4,in(B4)}$

• R: region name

• R': region whose header will be subsumed

CS745: Interval Analysis 11 T. Mowry

III. Complexity of Algorithm

R	T_1/T_2	R'	$F_{R,in(R')}$	$F_{R,B1}$	$F_{R,B2}$	F _{R,B3}	$F_{R,B4}$	F _{R,B5}
R_1	T ₂	B_1	F _{B2}	$F_{B1} \cdot F_{B2}$	F _{B2}			
R_2	T ₂	R_1	F_{B3}	$F_{R1,B1} \cdot F_{B3}$	$F_{R1,B2} \cdot F_{B3}$	F _{B3}		
R_3	T ₂	R ₂	F _{B4}	$F_{R2,B1} \cdot F_{B4}$	F _{R2,B2} ·F _{B4}	F _{R2,B3} ·F _{B4}	F _{B4}	
R_4	T ₂	R_3	F _{B5}	F _{R3,B1} ·F _{B5}	$F_{R3,B2} \cdot F_{B5}$	F _{R3,B3} ·F _{B5}	$F_{B4} \cdot F_{B5}$	F _{B5}

R	F _{R4,in(R)}
R_4	Ι
R_3	F _{B5} ·F _{R4,in(R4)}
R_2	$F_{B4} \cdot F_{R4,in(R3)}$
R_1	$F_{B3} \cdot F_{R4,in(R2)}$
B_1	$F_{B2} \cdot F_{R4,in(R1)}$

В	$F_{R4,B}$
B ₅	F _{B5} ·I
B_4	$F_{B4} \cdot F_{R4,in(R3)}$
B_3	$F_{B3} \cdot F_{R4,in(R2)}$
B_2	$F_{B2} \cdot F_{R4,in(R1)}$
B_1	$F_{B1} \cdot F_{R4,in(B1)}$

Optimization

- Let m = number of edges, n = number of nodes
- · Ideas for optimization
 - If we compute F_{R,B} for every region B is in, then it is very expensive
 - We are ultimately only interested in the entire region (E); we need to compute only F_{E,B} for every B.
 - There are many common subexpressions between F_{E,B1}, F_{E,B2}, ...
 - Number of F_{E,B} calculated = m
 - Also, we need to compute $F_{R,in(R')}$, where R' represents the region whose header is subsumed.
 - Number of F_{R,B} calculated, where R is not final = n
- Total number of F_{R,B} calculated: (m + n)
 - · Data structure keeps "header" relationship
 - Practical algorithm: O(m log n)
 - Complexity: $O(m\alpha(m,n))$, α is inverse Ackermann function

CS745: Interval Analysis 13 T. Mowry

Reducibility

- If no T1, T2 is applicable before graph is reduced to single node split node and continue
- · Worst case: exponential
- · Most graphs (including GOTO programs) are reducible

Carnegie Mellon

IV. Comparison with Iterative Data Flow

Applicability

- Definitions of F* can make technique more powerful than iterative algorithms
- Backward flow -- reverse graph is not typically reducible.
 Requires more effort to adapt to backward flow than iterative alg.
- More important for interprocedural optimization

Speed

- Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Serious "irreducibility" can be slow with elimination
- Reducible graph & Cycles do not add information (common)
 - Iterative: (depth + 2) passes depth is 2.75 average, independent of code length
 - Elimination: Theoretically almost linear, typically O(m log n)

Carnegie Mellon

- Reducible & Cycles add information
 - Iterative takes longer to converge
 - · Elimination remains the same

C\$745: Interval Analysis 15 T. Mowry