Lecture 10

Interval Analysis

I Basic Idea
Il Algorithm
1] Optimization and Complexity

v Comparing interval analysis with iterative algorithms

Reference: Muchnick 7.5-7.7, 8.8
Advanced readings (optional):

R. E. Tarjan, “A Unified Approach to Path Problems”,
JACM 28 (3) July 1981, pp. 577-593.

R. E. Tarjan, “Fast Algorithms for Solving Path Problems”,
JACM 28 (3) July 1981, pp. 594-614.

CS745: Interval Analysis 1 T. Mowry

Motivation for Studying Interval Analysis

« Exploit the structure of block-structured programs in data flow

e Tie in several concepts studied

» Use of structure in induction variables, loop invarient
< motivated by nature of the problem
¢ This lecture: can we use structure for speed?

* |terative algorithm for data flow
e This lecture: an alternative algorithm

» Reducibility
« all retreating edges of DFST are back edges
« reducible graphs converge quickly
¢ This lecture: algorithm exploits & requires reducibility

« Usefulness in practice
 Faster for “harder” analyses
» Useful for analyses related to structure
« Theoretically interesting - better understanding of data flow

CS745: Interval Analysis 2 T. Mowry



[. Big Picture

CS745: Interval Analysis 3 T. Mowry

Basic Idea

* In iterative analysis

* DEFINITION: Transfer function Fg:
summarize effect from beginning to end of basic block B

¢ Ininterval analysis

+ DEFINITION: Transfer function Fg g:
summarize effect from beginning of R to end of basic block B

» Recursively
construct a larger region R from smaller regions
construct Fg g from transfer functions for smaller regions
until the program is one region

» Let P be the region for the entire program,
and v be initial value at entry node

* out[B] =Fpg (V)
* in[B] = U g out[B’], where B’ is a predecessor of B

CS745: Interval Analysis 4 T. Mowry



L
ll. Algorithm

¢ (a) Operations on transfer functions
¢ (b) How to build nested regions?

¢ (c) How to construct transfer functions
that correspond to the larger regions?

CS745: Interval Analysis 5 T. Mowry

]
(a) Operations on Transfer Functions

Example: Reaching Definitions

F(x) =GenO (x - Kill)

Fa(F1(x)) = Gen, O (F1(x) - Killy)
= Gen, 0 (Gen; O (x - Killy)) - Kill,)
= Gen, 0 (Gen; O (x - Killy)) - Kill,)
= Gen,, 0 (Gen, - Kill) O (x- ( Killy 0 Kill,))

Fl(X) O F2(X) = Genl 0 (X- Kl”l) O Genz O (X- K|”2)
= (Gen, 0 Geny) [ (x- (Killn Kill,))

F*(x) <= F"(x), On=0
=x0OFX OFFX)O ...
=x U0 (Gen O (x-Kill)) O (Gen O ((Gen O (x- Kill)) - Kill)) [T ...
=Gen O (x-0O)

CS745: Interval Analysis 6 T. Mowry



|
(b) Structure of Nested Regions (An example)

« Aregion in a flow graph is a set of nodes that
* includes a header, which dominates all other nodes in a region
e T1-T2 rule (Hecht & Ullman)

e T1: Remove a loop
If nis a node with a loop, i.e. an edge n->n, delete that edge

e T2: Remove a vertex
If there is a node n that has a unique predecessor, m,
then m may consume n by
deleting n and making all successors of n be successors of m.

Carnegie Mellon -

CS745: Interval Analysis 7 T. Mowry

 In reduced graph:

» each vertex represents a subgraph of original graph (a region).
» each edge represents an edge in original graph

< Limit flow graph: result of exhaustive application of T1 and T2
 independent of order of application.
« if limit flow graph has a single vertex => reducible

¢ Can define larger regions (e.g. Allen&Cocke’s intervals)
simple regions=>simple composition rules for transfer functions

CS745: Interval Analysis 8 T. Mowry



C ransfter Functions for ule
Rl R Rl R
(7 ) " H )
R
[ ]
[ ]
g _J \_ J

» Transfer function
Frg: summarizes the effect from beginning of R to end of B
Fr,in(H2): summarizes the effect from beginning of R to beginning of H2

* Unchanged for blocks B in region Ry (Fgr g = Fr1 )
* Fr,inth2) = U p Frp Where p is a predecessor of H,
* For blocks B in region Ry: Fg g = Fro g ‘FR in(H2

Carnegie Mellon -

CS745: Interval Analysis 9 T. Mowry

Transfer Functions for T1 Rule

R
4 N\
Ry

>

+ Transfer function Fr g
* Frint) = (O p Fryp) *, where p is a predecessor of H in R

* Fre = Fr1,8°FRin(H)

CS745: Interval Analysis 10 T. Mowry



First Example

R4 R4
R3
R> R3 By
R, |
By { BB =B~ R2
=
By B
R Tyl | R FrinR) FrB1 FrB2 FrB3 Fr B4
Ry |To  |By |Fpy Fe1 FeoFRr1inB2)
Ro | To  |Ry | Fas Frig1Eroinr) | FRuB2E 2o inr1) | Fe3
R3 |T1  |Ry | (Frop1itFroB2)* | FroB1FR3inR2) | FR2,B2EFR3in(R2) | FR2,B3ER3in(R2)
R4 T, | By | FragslFRras2 Frap1 Fra g2 Fra g3 FBaFRa4,inB4)

* R:region name

* R’: region whose header will be subsumed

CS745: Interval Analysis

1l

T. Mowry

[ll. Complexity of Algorithm
@—»@—»

— !
—
w 3
N— __J 4
R TyT2| R | Frinwr) FrB1 FrB2 FrB3 Frpes | Fres
Ry |To |Bp | Feo Fg1fgo Fgo
Ro [To |Ry |Fes Frigifas | Frigolcs | Fes
R3|To |Ry |Fpy Frop1®rs | Frop2®rsa | FrRop3®rsa | Fra
Rs | T2 |Rs |Fgs Frap1Fes | Frapolffes | Frapsfes | Fealffas | Fes
A
R| Fra B| Frus
R4,in(R) , B5 R3
R3 | FesERra,in(R4) Bs | FB4FRa,inR3) Ba /R2\
R2 | FBaFRa4in(R3) B3 | Fe3Fra,inR2) B R
1
R1 | FeaFrainr2) B2 | Fe2FRra,inRY) Pas
B1 | FeoFRrainry) B1 | Fe1Fra,in@B1) B, B;

CS745: Interval Analysis

12

T. Mowry




|
Optimization

e Let m = number of edges, n = number of nodes

» Ideas for optimization

* If we compute Fg g for every region B is in,
then it is very expensive

» We are ultimately only interested in the entire region (E);
we need to compute only Fg g for every B.
 There are many common subexpressions between Fg g1,
FE,BZ’
* Number of Fg g calculated = m
* Also, we need to compute Fg inr), Where R’ represents the
region whose header is subsumed.
* Number of Fg g calculated, where R is not final = n

* Total number of Fg g calculated: (m + n)

» Data structure keeps “header” relationship
¢ Practical algorithm: O(m log n)
* Complexity: O(ma (m,n)), a is inverse Ackermann function

Carnegie Mellon -

T. Mowry

CS745: Interval Analysis 13

Reducibility

@

£

» Ifno T1, T2 is applicable before graph is reduced to single node
split node and continue

» Worst case: exponential
* Most graphs (including GOTO programs) are reducible

CS745: Interval Analysis 14 T. Mowry



]
V. Comparison with Iterative Data Flow

e Applicability
 Definitions of F* can make technique
more powerful than iterative algorithms

» Backward flow -- reverse graph is not typically reducible.
Requires more effort to adapt to backward flow than iterative alg.

» More important for interprocedural optimization
e Speed
* Irreducible graphs

« lterative algorithm can process irreducible parts uniformly
« Serious “irreducibility” can be slow with elimination

» Reducible graph & Cycles do not add information (common)

« lterative: (depth + 2) passes
depth is 2.75 average, independent of code length

« Elimination: Theoretically almost linear, typically O(m log n)

» Reducible & Cycles add information
« lterative takes longer to converge
» Elimination remains the same

CS745: Interval Analysis 15 T. Mowry



