
1

Memory Hierarchy Optimizations

Todd C. Mowry
CS745: Optimizing Compilers

T. MowryCS745: Memory Hierarchy Optimizations -2-

Caches: A Quick Review

How do they work?
Why do we care about them?
What are typical configurations today?
What are some important cache parameters that will
affect performance?

T. MowryCS745: Memory Hierarchy Optimizations -3-

Optimizing Cache Performance

Things to enhance:
• temporal locality
• spatial locality

Things to minimize:
• conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

T. MowryCS745: Memory Hierarchy Optimizations -4-

Two Things We Can Manipulate

Time:
• When is an object accessed?

Space:
• Where does an object exist in the address space?

How do we exploit these two levers?

2

T. MowryCS745: Memory Hierarchy Optimizations -5-

Time: Reordering Computation

What makes it difficult to know when an object is
accessed?

How can we predict a better time to access it?
• What information is needed?

How do we know that this would be safe?

T. MowryCS745: Memory Hierarchy Optimizations -6-

Space: Changing Data Layout

What do we know about an object’s location?
• scalars, structures, pointer-based data structures,

arrays, code, etc.

How can we tell what a better layout would be?
• how many can we create?

To what extent can we safely alter the layout?

T. MowryCS745: Memory Hierarchy Optimizations -7-

Types of Objects to Consider

Scalars
Structures & Pointers
Arrays

T. MowryCS745: Memory Hierarchy Optimizations -8-

Scalars

Locals

Globals

Procedure arguments

Is cache performance a
concern here?
If so, what can be done?

int x;
double y;
foo(int a){
int i;
…
x = a*i;
…

}

3

T. MowryCS745: Memory Hierarchy Optimizations -9-

Structures and Pointers

What can we do here?
• within a node
• across nodes

What limits the compiler’s ability to
optimize here?

struct {
int count;
double velocity;
double inertia;
struct node *neighbors[N];

} node;

T. MowryCS745: Memory Hierarchy Optimizations -10-

Arrays

usually accessed within loops nests
• makes it easy to understand “time”

what we know about array element addresses:
• start of array?
• relative position within array

double A[N][N], B[N][N];
…
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

T. MowryCS745: Memory Hierarchy Optimizations -11-

Handy Representation:
“Iteration Space”

each position represents an iteration

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

i

j

T. MowryCS745: Memory Hierarchy Optimizations -12-

Visitation Order in Iteration Space

Note: iteration space ∫ data space

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

i

j

4

T. MowryCS745: Memory Hierarchy Optimizations -13-

When Do Cache Misses Occur?
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

i

j

i

j

A B

T. MowryCS745: Memory Hierarchy Optimizations -14-

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

i

j

T. MowryCS745: Memory Hierarchy Optimizations -15-

Optimizing the Cache Behavior of
Array Accesses

We need to answer the following questions:
• when do cache misses occur?

• use “locality analysis”
• can we change the order of the iterations (or possibly

data layout) to produce better behavior?
• evaluate the cost of various alternatives

• does the new ordering/layout still produce correct
results?

• use “dependence analysis”

T. MowryCS745: Memory Hierarchy Optimizations -16-

Examples of Loop Transformations

Loop Interchange
Cache Blocking
Skewing
Loop Reversal
…

(we will briefly discuss the first two)

5

T. MowryCS745: Memory Hierarchy Optimizations -17-

Loop Interchange

(assuming N is large relative to cache size)

for i = 0 to N-1
for j = 0 to N-1

A[j][i] = i*j;

i

j

for j = 0 to N-1
for i = 0 to N-1

A[j][i] = i*j;

j

i

Hit
Miss

T. MowryCS745: Memory Hierarchy Optimizations -18-

Cache Blocking (aka “Tiling”)

now we can exploit temporal locality

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by B
for i = 0 to N-1

for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

i

j

i

j

A[i] A[j]
i

j

i

j

A[i] A[j]

T. MowryCS745: Memory Hierarchy Optimizations -19-

Impact on Visitation Order
in Iteration Space

i

j

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by B
for i = 0 to N-1

for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

i

j

T. MowryCS745: Memory Hierarchy Optimizations -20-

Cache Blocking in Two Dimensions

brings square sub-blocks of matrix “b” into the cache
completely uses them up before moving on

for i = 0 to N-1
for j = 0 to N-1
for k = 0 to N-1
c[i,k] += a[i,j]*b[j,k];

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B
for i = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)
for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];

6

T. MowryCS745: Memory Hierarchy Optimizations -21-

Predicting Cache Behavior through
“Locality Analysis”

Definitions:
• Reuse:

• accessing a location that has been accessed in the past
• Locality:

• accessing a location that is now found in the cache
Key Insights
• Locality only occurs when there is reuse!
• BUT, reuse does not necessarily result in locality.

• why not?

T. MowryCS745: Memory Hierarchy Optimizations -22-

Steps in Locality Analysis

1. Find data reuse
• if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
• set of inner loops where the data accessed by an

iteration is expected to fit within the cache
3. Find data locality:

• reuse … localized iteration space ï locality

T. MowryCS745: Memory Hierarchy Optimizations -23-

Types of Data Reuse/Locality

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
Hit
Miss

i

j

A[i][j]

i

j

B[j+1][0]

i

j

B[j][0]

Spatial Temporal Group

T. MowryCS745: Memory Hierarchy Optimizations -24-

Reuse Analysis: Representation

Map n loop indices into d array indices via array indexing
function:

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

7

T. MowryCS745: Memory Hierarchy Optimizations -25-

Temporal reuse occurs between iterations and
whenever:

Rather than worrying about individual values of and ,
we say that reuse occurs along direction vector when:

Solution: compute the nullspace of H

Finding Temporal Reuse

T. MowryCS745: Memory Hierarchy Optimizations -26-

Temporal Reuse Example

Reuse between iterations (i1,j1) and (i2,j2) whenever:

True whenever j1 = j2, and regardless of the difference
between i1 and i2.
• i.e. whenever the difference lies along the nullspace of ,

which is span{(1,0)} (i.e. the outer loop).

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

T. MowryCS745: Memory Hierarchy Optimizations -27-

More Complicated Example

Nullspace of = span{(1,-1)}.

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

Hit
Miss

i

j

T. MowryCS745: Memory Hierarchy Optimizations -28-

Computing Spatial Reuse

Replace last row of H with zeros, creating Hs
Find the nullspace of Hs

Result: vector along which we access the same row

8

T. MowryCS745: Memory Hierarchy Optimizations -29-

Computing Spatial Reuse: Example

Hs =

Nullspace of Hs = span{(0,1)}
• i.e. access same row of A[i][j] along inner loop

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

i

j

Hit
Miss

T. MowryCS745: Memory Hierarchy Optimizations -30-

Computing Spatial Reuse:
More Complicated Example

Hs =

Nullspace of H = span{(1,-1)}

Nullspace of Hs = span{(1,0),(0,1)}

for i = 0 to N-1
for j = 0 to N-1

A[i+j] = i*j;

Hit
Miss

i

j

T. MowryCS745: Memory Hierarchy Optimizations -31-

Group Reuse

Only consider “uniformly generated sets”
• index expressions differ only by constant terms

Check whether they actually do access the same cache line
Only the “leading reference” suffers the bulk of the cache
misses

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

T. MowryCS745: Memory Hierarchy Optimizations -32-

Localized Iteration Space

Given finite cache, when does reuse result in locality?

Localized if accesses less data than effective cache size

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] + B[j+1][0];

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

i

j

B[j+1][0]

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})

9

T. MowryCS745: Memory Hierarchy Optimizations -33-

Computing Locality

Reuse Vector Space ∩ Localized Vector Space ⇒ Locality Vector Space

Example:

If both loops are localized:
• span{(1,0)} ∩ span{(1,0),(0,1)} ⇒ span{(1,0)}
• i.e. temporal reuse does result in temporal locality

If only the innermost loop is localized:
• span{(1,0)} ∩ span{(0,1)} ⇒ span{}
• i.e. no temporal locality

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

