
Tolerating Latency Through Prefetching

The Memory Latency Problem

• ↑ processor speed >>↑ memory speed

• latency even worse for multiprocessors

• caches are not a panacea

 Processors
� � Memory

|
79

|
81

|
83

|
85

|
87

|
89

|
91

|
93

|0

|
||

||
|||

|1

|
||

||
|||

|10

|
||

||
|||

|100

|
||

||
|||

|1000

 Year

 S
p

ee
d

 (
M

H
z)

� � � � �

Memory Latency in Multiprocessors

• Architecture resembling DASH multiprocessor.

- latency = 1 : 15 : 30 : 100 : 130 processor cycles

- 16 processors

☞ 6 of 8 spend > 50% of time stalled for memory.

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e synchronization

OCEAN
LU

MP3D
CHOLESKY

LOCUS
WATER

BARNES
PTHOR

memory access stalls
instructions

Overview

• Tolerating Memory Latency

• Prefetching Classification

• Compiler-Based Prefetching

• Performance Results

• Concluding Remarks

Coping with Memory Latency

Reduce Latency:

• Caches, local memory, low-latency network

• Locality optimizations

Tolerate Latency:

• Relaxed memory consistency models

- permits buffering and pipelining of accesses

• Prefetching

- move data close to the processor before it is needed

• Context switching

- switch contexts on long-latency operations

☞ Complementary -- not mutually exclusive

Benefits of Prefetching

• prefetch early enough

- completely hides latency

• issue prefetches in blocks

- pipelining

- only first reference suffers

• prefetch with ownership

- reduces write latency

Prefetching Classification

• Non-bindingvs.Binding prefetches

Binding: value of a later “real” reference is bound when prefetch
is performed.

- restricts legal issue

- additional high-speed storage needed

Non-Binding: prefetch brings data closer, but value is not bound
until later “real” reference.

- data remains visible to coherence protocol

- prefetch issue not restricted

prefetch(&x);
...

LOCK(L);
x = x + 1;
UNLOCK(L);

Prefetching Classification (continued)

• hardware controlledvs.software controlled

Hardware Controlled: (no hints from software)

- multi-word cache blocks

- streaming buffers

- instruction look-ahead and stride detection

Software Controlled: (explicit prefetch instructions)

- prefetches inserted by programmer

- prefetches inserted by runtime system

- prefetches inserted by compiler

Hardware Controlled Prefetching

• Large Cache Blocks:

- Most machines already exploit such prefetching

- Great for codes with unit-stride accesses

- Problems of increased traffic and false-sharing in multiprocessors

• Streaming Buffers:

- Concept: Fetch a subsequent cache line, when current one is touched

- Can completely hide latency for codes with unit-stride accesses

- Does not help with non-unit stride access codes

• Instruction Lookahead and Stride Detection Hardware:

- Example: Scheme by Baer and Chen (Supercomputing ‘91)

- UseBranch Prediction Table to computeLook-Ahead PC (LA-PC) value

- LA-PC used to lookupReference Prediction Table (tag, prev-addr, stride, state)

- State of entry in RPT can beinitial, transient, steady,or no-prediction

- Advantages:

- Can handle non-unit stride accesses

- No requirements of software and no direct instruction overhead

- Limitations:

- Complex hardware (BPT, RPT, ...) (TLB for VA --> PA)

- Branch-prediction accuracy can limit amount of lookahead

- Issues unnecessary prefetches, busying cache tags (e.g., spatial locality)

- Can not handle indirections (e.g., A[index[i]])

Context Switching

☞ switch between contexts to hide long-latency operations

Fetch A

Fetch B

Load A→

Load B→

Executing Context #2

Switching Contexts

Time

Executing Context #1

Advantages:

• handles complex access patterns

• no software support required

Disadvantages:

• requires additional parallel threads

• overheads in switching contexts

• requires substantial hardware support

Example:

Overall Approach to Coping with Latency

Technique Exploits Hardware Support

Locality Optimizations ability to reorder
loop iterations none

Software-Controlled
Prefetching

parallelism within
a single thread minimal

Context Switching parallelism across
multiple threads substantial

Compiler Based Prefetching

Prefetching Concepts

• possible only if addresses can be determined ahead of time

• coverage factor = fraction of misses that are prefetched

• unnecessary if data is already in the cache

• effective if data is in the cache when later referenced

Analysis: what to prefetch

• maximize coverage factor

• minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches

• maximize effectiveness

• minimize overhead per prefetch

Compiler Algorithm

Analysis : what to prefetch

• Locality Analysis

Scheduling : when/how to issue prefetches

• Loop Splitting

• Software Pipelining

Data Locality Example

for (i=0; i<3; i++)
for (j=0; j<100; j++)

A[i][j] = B[j][0] + B[j+1][0];

i

j

A[i][j]

i

j

B[j+1][0]

i

j

B[j][0]

Cache Hit
Cache Miss

Spatial

Temporal

Group

Software Pipelining

where l = memory latency, s = shortest path through loop body.

Software Pipelined Loop
Original Loop (5 iterations ahead)

for (i=0; i<100; i++) for (i=0; i<5; i++) /* Prolog */
a[i] = 0; prefetch(&a[i]);

for (i=0; i<95; i++) /* Steady State */
prefetch(&a[i+5]);
a[i] = 0;

for (i=95; i<100; i++) /* Epilog */
a[i] = 0;

l
s
---Iterations Ahead =

Software Pipelining for Indirections

Software Pipelined Loop
Original Loop (5 iterations ahead)

for (i=0; i<100; i++) for (i=0; i<5; i++) /* Prolog 1 */
sum += A[index[i]]; prefetch(&index[i]);

for (i=0; i<5; i++) /* Prolog 2 */
prefetch(&index[i+5]);
prefetch(&A[index[i]]);

for (i=0; i<90; i++) /* Steady State */
prefetch(&index[i+10]);
prefetch(&A[index[i+5]]);
sum += A[index[i]];

for (i=90; i<95; i++) /* Epilog 1 */
prefetch(&A[index[i+5]]);
sum += A[index[i]];

for (i=95; i<100; i++) /* Epilog 2 */
sum += A[index[i]];

Example Revisited

Original Code Code with Prefetching

for (i = 0; i < 3; i++) prefetch (&A[0][0]);
for (j = 0; j < 100; j++) for (j = 0; j<6; j += 2) {

A[i][j] = B[j][0] + B[j+1][0]; prefetch (&B[j+1][0]);
prefetch (&B[j+2][0]);
prefetch (&A[0][j+1]);

}
for (j = 0; j<94; j += 2) {

prefetch (&B[j+7][0]);
prefetch (&B[j+8][0]);
prefetch (&A[0][j+7]);
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j<100; j += 2) {

A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i<3; i++) {

prefetch (&A[i][0]);
for (j = 0; j<6; j += 2) {

prefetch (&A[i][j+1]);
}
for (j = 0; j<94; j += 2) {

prefetch (&A[i][j+7]);
A[i][j] = B[j][0]+B[j+1][0];
A[i][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j<100; j += 2) {

A[i][j] = B[j][0]+B[j+1][0];
A[i][j+1] = B[j+1][0]+B[j+2][0];

}
}

i=0

i>0

i

j

A[i][j]

i

j

B[j+1][0]

Cache Hit
Cache Miss

Prefetching for Multiprocessors

• non-binding vs. binding prefetches

- use non-binding since data remains coherent until accessed

prefetch(&x);
...

LOCK(L);
x = x + 1;
UNLOCK(L);

☞ no restrictions on when prefetches can be issued

• dealing with coherence misses

- localized space takes explicit synchronization into accoun

• further optimizations

- prefetch in exclusive-mode in read-modify-write situations

Multiprocessor Results

(N = No Prefetching, S = Selective Prefetching)

• memory stalls reduced by 50% to 90%

• synchronization stalls reduced in some cases

☞ 4 of 5 have speedups over 45%

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100

 61

 100

 44

 100

 69

 100

 78

 100

 69

N S N S N S N S N S
OCEAN LU MP3D CHOLESKY LOCUS

synchronization
memory access stalls
instructions

Effectiveness of Software Pipelining

• Large pf-miss ⇒ ineffective scheduling

- prefetched data still found in secondary cache

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e nopf-miss

OCEAN
LU

MP3D
CHOLESKY

LOCUS

pf-miss: too late
pf-miss: invalidated
pf-miss: replaced
pf-miss: in s-cache
pf-hit

Original Miss Breakdown

Exclusive-Mode Prefetching

• message traffic reduced by 7% to 29%

• release consistency ⇒ write latency already hidden

|0

|20

|40

|60

|80

|100

|120

OCEAN LU MP3D CHOLESKY LOCUS

Normalized Message Traffic

Shared-Mode Only
Exclusive-Mode

Limitations of Compiler Algorithm

(N = No Prefetching, H = Hand-Inserted Prefetching)

• WATER: needs procedure inlining across separate files

• BARNES: traverses an octree structure

• PTHOR: lots of pointers, very complex control flow
|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e prefetch memory overhead

 100 100
 92

 100

 81

N N H N H
WATER BARNES PTHOR

synchronization
memory access stalls
instructions

Overall Approach to Coping with Latency

• techniques are complementary

- best to combine prefetching with locality optimizations

• software-controlled prefetching is quite successful

Technique Exploits Hardw are Suppor t

Locality Optimizations
ability to r eorder

loop iter ations
none

Software-Contr olled
Prefetching

parallelism within
a single thr ead

minimal

Context Switching
parallelism acr oss

m ultiple threads
substantial

