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Networks

• Design Options:

• Topology

• Routing

• Direct vs. Indirect

• Physical implementation

• Evaluation Criteria:

• Latency

• Bisection Bandwidth

• Contention and hot-spot behavior

• Partitionability

• Cost and scalability

• Fault tolerance
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Buses

• Simple and cost-effective for small-scale multiprocessors

• Not scalable (limited bandwidth;  electrical complications)
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Crossbars

• Each port has link to every other port

+ Low latency and high throughput

- Cost grows as O(N^2) so not very scalable.

- Difficult to arbitrate and to get all data lines into and out of a centralized
crossbar.

• Used in small-scale MPs (e.g., C.mmp) and as building block for other
networks (e.g., Omega).
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Rings

• Cheap:  Cost is O(N).

• Point-to-point wires and pipelining can be used to make them
very fast.

+ High overall bandwidth

- High latency O(N)

• Examples:  KSR machine, Hector
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Trees

• Cheap:  Cost is O(N).

• Latency is O(logN).

• Easy to layout as planar graphs (e.g., H-Trees).

• For random permutations, root can become bottleneck.

• To avoid root being bottleneck, notion of Fat-Trees (used in CM-5)

• channels are wider as you move towards root.

H-Tree

Fat Tree
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Hypercubes

• Also called binary n-cubes.   # of nodes = N = 2^n.

• Latency is O(logN);  Out degree of PE is O(logN)

• Minimizes hops; good bisection BW; but tough to layout in 3-space

• Popular in early message-passing computers (e.g., intel iPSC, NCUBE)

• Used as direct network ==> emphasizes locality

0-D 1-D 2-D 3-D 4-D
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Multistage Logarithmic Networks

• Cost is O(NlogN); latency is O(logN);  throughput is O(N).

• Generally indirect networks.

•  Many variations exist (Omega, Butterfly, Benes, ...).

• Used in many machines:  BBN Butterfly, IBM RP3, ...
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Omega Network

• All stages are same, so can use recirculating network.

• Single path from source to destination.

• Can add extra stages and pathways to minimize collisions and increase
fault tolerance.

• Can support combining.  Used in IBM RP3.
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Butterfly Network
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• Equivalent to Omega network.  Easy to see routing of messages.

• Also very similar to hypercubes (direct vs. indirect though).

• Clearly see that bisection of network is (N / 2) channels.

• Can use higher-degree switches to reduce depth. Used in BBN machines.
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k-ary n-cubes

• Generalization of hypercubes (k-nodes in a string)

• Total # of nodes = N = k^n.

• k  > 2 reduces # of channels at bisection, thus allowing for wider
channels but more hops.

4-ary 3-cube
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Routing Strategies and Latency

• Store-and-Forward routing:

• Tsf = Tc • ( D • L / W)

• L = msg length, D = # of hops,

  W = width, Tc = hop delay

• Wormhole routing:

• Twh = Tc • (D +  L / W)

• # of hops is an additive rather than
multiplicative factor

• Virtual Cut-Through routing:

• Older and similar to wormhole.  When blockage occurs, however,
message is removed from network and buffered.

• Deadlock are avoided through use of virtual channels and by using a
routing strategy that does not allow channel-dependency cycles.
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Advantages of Low-Dimensional Nets

• What can be built in VLSI is often wire-limited

• LDNs are easier to layout:
– more uniform wiring density (easier to embed in 2-D or 3-D space)

– mostly local connections (e.g., grids)

• Compared with HDNs (e.g., hypercubes), LDNs have:
– shorter wires (reduces hop latency)

– fewer wires (increases bandwidth given constant bisection width)

» increased channel width is the major reason why LDNs win!

• Factors that limit end-to-end latency:
– LDNs: number of hops

– HDNs: length of message going across very narrow channels

• LDNs have better hot-spot throughput
– more pins per node than HDNs



Performance Under Contention
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Types of Hot Spots

• Module Hot Spots:

• Lots of  PEs accessing the same PE's memory at the same
time.

• Possible solutions:

• suitable distribution or replication of data

• high BW memory system design

• Location Hot Spots:

• Lots of  PEs accessing the same  memory location at the
same time

• Possible solutions:

• caches for read-only data, updates for R-W data

• software or hardware combining
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NYU Ultracomputer/ IBM RP3

• Focus on scalable bandwidth and synchronization in presence of hot-spots.

• Machine model: Paracomputer (or WRAM model of Borodin)

• Autonomous PEs sharing a central memory

• Simultaneous reads and writes to the same location can all be handled in
a single cycle.

• Semantics given by the serialization principle:

• ... as if all operations occurred in some (unspecified) serial order.

• Obviously the above is a very desirable model.

• Question is how well can it be realized in practise?

• To achieve scalable synchronization, further extended read (write)
operations with atomic read-modify-write (fetch-&-op) primitives.
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The Fetch-&-Add Primitive

• F&A(V,e) returns old value of V and atomically sets V = V + e;

• If V = k, and   X = F&A(V, a)   and  Y = F&A(V, b)   done at same time

• One possible result:           X = k,  Y = k+a,   and   V = k+a+b.

• Another possible result:    Y = k,  X = k+b,   and   V = k+a+b.

• Example use:  Implementation of task queues.

Insert:   myI = F&A(qi, 1);

         Q[myI] = data;

         full[myI] = 1;

Delete:  myI = F&A(qd, 1);

              while (!full[myI])  ;

         data = Q[myI];

               full[myI] = 0;
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The IBM RP3 (1985)

• Design Plan:

• 512 RISC processors (IBM 801s)

• Distributed main memory with software cache coherence

• Two networks: Low latency Banyan and a combining Omega

==> Goal was to build the NYU Ultracomputer model

• Interesting aspects:

• Data distribution scheme to address locality and module hot spots

• Combining network design to address synchronization bottlenecks
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Combining Network

• Omega topology;  64-port network resulting from 6-levels of 2x2 switches.

• Request and response networks are integrated together.

• Key observation: To any destination module, the paths from all sources
form a tree.
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Combining Network Details

• Requests must come together locationally (to same location), spatially (in
queue of same switch), and temporally (within a small time window) for
combining to happen.
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Contention for the Network

• Location Hot Spot: Higher accesses to a single location imposed on a
uniform background traffic.

• May arise due to synch accesses or other heavily shared data

• Not only are accesses to hot-spot location delayed, they found all
other accesses were delayed too. (Tree Saturation effect.)
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Saturation Model

• Parameters:

• p = # of PEs;   r = # of refs / PE / cycle;   h = % refs from PE to hot spot

• Total traffic to hot-spot memory module = rhp + r(1-h)

• "rhp" is hot-spot refs and "r(1-h)" is due to uniform traffic

• Latencies for all refs rise suddenly when [rhp + r(1-h)] = 1, assuming memory
handles one request per cycle.

• Tree Saturation Effect: Buffers at all
switches in the shaded area fill up, and
even non-hot-spot requests have to
pass through there.

• They found that combining helped in
handling such location hot spots.
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Bandwidth Issues: Summary

•  Network Bandwidth

• Memory Bandwidth

• local bandwidth

• global bandwidth

• Hot-Spot Issues

• module hot spots

• location hot spots



Active Messages

(slide content courtesy of David Culler)
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Problems with Blocking Send/Receive

• 3-way latency

Remember: back-to-back
DMA hardware...

compute
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Problems w/ Non-blocking Send/Rec

With  receive hints:
``waiting-matching
store´´ problem

• expensive
buffering

send

receive

compute

send

receive

Node 1

send

receive
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send
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Problems with Shared Memory

Local storage hierarchy:
• access several levels before

communication starts
(DASH: 30cycles)

• resources reserved by outstanding
requests

• difficulty in suspending threads

DRAM

L2-$

L1-$

CPU

NI

ld

miss

send

recv

fill

data

Inappropriate semantics in some cases:
• only read/write cache lines
• signals turn into consistency issues

Example: broadcast tree
while(!me->flag);
left->data = me->data;
left->flag = 1;
right->data = me->data;
right->flag = 1;
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Active Messages

Head of the message is the address of its handler

Handler executes immediately upon arrival

• extracts msg from network and integrates it with computation, possibly replies

• handler does not ``compute´´

No buffering beyond transport
• data stored in pre-allocated storage

• quick service and reply, e.g., remote-fetch

data IP

Node

Handler

Primary 
Computation

Idea:

Associate a small amount
of remote computation
with each message

Note: user-level handler
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Active Message Example: Fetch&Add

int FetchNAdd(int proc,
int *addr, int inc)

{
flag = 0;
AM(proc, FetchNAdd_h,

addr, inc, MYPROC);
while(!flag) ;
return value;

}

void FetchNAdd_h(int *addr,
int inc, int retproc)

{
int v = inc + *addr;
*addr = v;
AM_reply(retproc,

FetchNAdd_rh, v);
}void FetchNAdd_rh(int data)

{
value = data;
flag++;

}

static volatile int value;
static volatile int flag;
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Send/Receive Using Active Messages

MatchTablecompute

send

compute

receive

Node 1 Node 2

send
handler

recv
handler

data
handler

Req To Send

Ready To Recv

DATA

–> use handlers to
implement protocol

Reduces send+recv overhead from 95 µsec to 3 µsec on CM-5.


