
• Topics
– Network design space

– Contention

– Active messages

Multiprocessor
Interconnection

Networks

Todd C. Mowry
CS 740

November 19, 1998

CS 740 F’98– 2 –

Networks

• Design Options:

• Topology

• Routing

• Direct vs. Indirect

• Physical implementation

• Evaluation Criteria:

• Latency

• Bisection Bandwidth

• Contention and hot-spot behavior

• Partitionability

• Cost and scalability

• Fault tolerance

CS 740 F’98– 3 –

Buses

• Simple and cost-effective for small-scale multiprocessors

• Not scalable (limited bandwidth; electrical complications)

P PP

Bus

CS 740 F’98– 4 –

Crossbars

• Each port has link to every other port

+ Low latency and high throughput

- Cost grows as O(N^2) so not very scalable.

- Difficult to arbitrate and to get all data lines into and out of a centralized
crossbar.

• Used in small-scale MPs (e.g., C.mmp) and as building block for other
networks (e.g., Omega).

P

P

P

P

M M M M

Crossbar

CS 740 F’98– 5 –

Rings

• Cheap: Cost is O(N).

• Point-to-point wires and pipelining can be used to make them
very fast.

+ High overall bandwidth

- High latency O(N)

• Examples: KSR machine, Hector

P PP

P P P

Ring

CS 740 F’98– 6 –

Trees

• Cheap: Cost is O(N).

• Latency is O(logN).

• Easy to layout as planar graphs (e.g., H-Trees).

• For random permutations, root can become bottleneck.

• To avoid root being bottleneck, notion of Fat-Trees (used in CM-5)

• channels are wider as you move towards root.

H-Tree

Fat Tree

CS 740 F’98– 7 –

Hypercubes

• Also called binary n-cubes. # of nodes = N = 2^n.

• Latency is O(logN); Out degree of PE is O(logN)

• Minimizes hops; good bisection BW; but tough to layout in 3-space

• Popular in early message-passing computers (e.g., intel iPSC, NCUBE)

• Used as direct network ==> emphasizes locality

0-D 1-D 2-D 3-D 4-D

CS 740 F’98– 8 –

Multistage Logarithmic Networks

• Cost is O(NlogN); latency is O(logN); throughput is O(N).

• Generally indirect networks.

• Many variations exist (Omega, Butterfly, Benes, ...).

• Used in many machines: BBN Butterfly, IBM RP3, ...

CS 740 F’98– 9 –

Omega Network

• All stages are same, so can use recirculating network.

• Single path from source to destination.

• Can add extra stages and pathways to minimize collisions and increase
fault tolerance.

• Can support combining. Used in IBM RP3.

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Omega Network

CS 740 F’98– 10 –

Butterfly Network

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Butterfly Network

split on
 MSB

split on
 LSB

• Equivalent to Omega network. Easy to see routing of messages.

• Also very similar to hypercubes (direct vs. indirect though).

• Clearly see that bisection of network is (N / 2) channels.

• Can use higher-degree switches to reduce depth. Used in BBN machines.

CS 740 F’98– 11 –

k-ary n-cubes

• Generalization of hypercubes (k-nodes in a string)

• Total # of nodes = N = k^n.

• k > 2 reduces # of channels at bisection, thus allowing for wider
channels but more hops.

4-ary 3-cube

CS 740 F’98– 12 –

Routing Strategies and Latency

• Store-and-Forward routing:

• Tsf = Tc • (D • L / W)

• L = msg length, D = # of hops,

 W = width, Tc = hop delay

• Wormhole routing:

• Twh = Tc • (D + L / W)

• # of hops is an additive rather than
multiplicative factor

• Virtual Cut-Through routing:

• Older and similar to wormhole. When blockage occurs, however,
message is removed from network and buffered.

• Deadlock are avoided through use of virtual channels and by using a
routing strategy that does not allow channel-dependency cycles.

CS 740 F’98– 13 –

Advantages of Low-Dimensional Nets

• What can be built in VLSI is often wire-limited

• LDNs are easier to layout:
– more uniform wiring density (easier to embed in 2-D or 3-D space)

– mostly local connections (e.g., grids)

• Compared with HDNs (e.g., hypercubes), LDNs have:
– shorter wires (reduces hop latency)

– fewer wires (increases bandwidth given constant bisection width)

» increased channel width is the major reason why LDNs win!

• Factors that limit end-to-end latency:
– LDNs: number of hops

– HDNs: length of message going across very narrow channels

• LDNs have better hot-spot throughput
– more pins per node than HDNs

Performance Under Contention

CS 740 F’98– 15 –

Types of Hot Spots

• Module Hot Spots:

• Lots of PEs accessing the same PE's memory at the same
time.

• Possible solutions:

• suitable distribution or replication of data

• high BW memory system design

• Location Hot Spots:

• Lots of PEs accessing the same memory location at the
same time

• Possible solutions:

• caches for read-only data, updates for R-W data

• software or hardware combining

CS 740 F’98– 16 –

NYU Ultracomputer/ IBM RP3

• Focus on scalable bandwidth and synchronization in presence of hot-spots.

• Machine model: Paracomputer (or WRAM model of Borodin)

• Autonomous PEs sharing a central memory

• Simultaneous reads and writes to the same location can all be handled in
a single cycle.

• Semantics given by the serialization principle:

• ... as if all operations occurred in some (unspecified) serial order.

• Obviously the above is a very desirable model.

• Question is how well can it be realized in practise?

• To achieve scalable synchronization, further extended read (write)
operations with atomic read-modify-write (fetch-&-op) primitives.

CS 740 F’98– 17 –

The Fetch-&-Add Primitive

• F&A(V,e) returns old value of V and atomically sets V = V + e;

• If V = k, and X = F&A(V, a) and Y = F&A(V, b) done at same time

• One possible result: X = k, Y = k+a, and V = k+a+b.

• Another possible result: Y = k, X = k+b, and V = k+a+b.

• Example use: Implementation of task queues.

Insert: myI = F&A(qi, 1);

 Q[myI] = data;

 full[myI] = 1;

Delete: myI = F&A(qd, 1);

 while (!full[myI]) ;

 data = Q[myI];

 full[myI] = 0;

Q

ful l

qd qi

infinite

CS 740 F’98– 18 –

The IBM RP3 (1985)

• Design Plan:

• 512 RISC processors (IBM 801s)

• Distributed main memory with software cache coherence

• Two networks: Low latency Banyan and a combining Omega

==> Goal was to build the NYU Ultracomputer model

• Interesting aspects:

• Data distribution scheme to address locality and module hot spots

• Combining network design to address synchronization bottlenecks

P
Mem Map
unit

Cache NI

main memory

L G

(interleave)

N
ET

W
O

RK
S

moveable boundary between
local and global storage

P
Mem Map
unit

Cache NI

main memory

L G

(interleave)

CS 740 F’98– 19 –

Combining Network

• Omega topology; 64-port network resulting from 6-levels of 2x2 switches.

• Request and response networks are integrated together.

• Key observation: To any destination module, the paths from all sources
form a tree.

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Omega Network

CS 740 F’98– 20 –

Combining Network Details

• Requests must come together locationally (to same location), spatially (in
queue of same switch), and temporally (within a small time window) for
combining to happen.

B

B

M

M

M

M

B

B

queue

queue

combining
queue

combining
queue

wait
buffer lookup

forward
(requests)

reverse
(replies)

insert

CS 740 F’98– 21 –

Contention for the Network

• Location Hot Spot: Higher accesses to a single location imposed on a
uniform background traffic.

• May arise due to synch accesses or other heavily shared data

• Not only are accesses to hot-spot location delayed, they found all
other accesses were delayed too. (Tree Saturation effect.)

CS 740 F’98– 22 –

Saturation Model

• Parameters:

• p = # of PEs; r = # of refs / PE / cycle; h = % refs from PE to hot spot

• Total traffic to hot-spot memory module = rhp + r(1-h)

• "rhp" is hot-spot refs and "r(1-h)" is due to uniform traffic

• Latencies for all refs rise suddenly when [rhp + r(1-h)] = 1, assuming memory
handles one request per cycle.

• Tree Saturation Effect: Buffers at all
switches in the shaded area fill up, and
even non-hot-spot requests have to
pass through there.

• They found that combining helped in
handling such location hot spots.

P

M

P P

M M

Hot Spot
Module

filled up
buffers

CS 740 F’98– 23 –

Bandwidth Issues: Summary

• Network Bandwidth

• Memory Bandwidth

• local bandwidth

• global bandwidth

• Hot-Spot Issues

• module hot spots

• location hot spots

Active Messages

(slide content courtesy of David Culler)

CS 740 F’98– 25 –

Problems with Blocking Send/Receive

• 3-way latency

Remember: back-to-back
DMA hardware...

compute

compute

send

compute

compute

receive

Node 1 Node 2

Time

CS 740 F’98– 26 –

Problems w/ Non-blocking Send/Rec

With receive hints:
``waiting-matching
store´´ problem

• expensive
buffering

send

receive

compute

send

receive

Node 1

send

receive

compute

send

receive

Node 2

Time

CS 740 F’98– 27 –

Problems with Shared Memory

Local storage hierarchy:
• access several levels before

communication starts
(DASH: 30cycles)

• resources reserved by outstanding
requests

• difficulty in suspending threads

DRAM

L2-$

L1-$

CPU

NI

ld

miss

send

recv

fill

data

Inappropriate semantics in some cases:
• only read/write cache lines
• signals turn into consistency issues

Example: broadcast tree
while(!me->flag);
left->data = me->data;
left->flag = 1;
right->data = me->data;
right->flag = 1;

CS 740 F’98– 28 –

Active Messages

Head of the message is the address of its handler

Handler executes immediately upon arrival

• extracts msg from network and integrates it with computation, possibly replies

• handler does not ``compute´´

No buffering beyond transport
• data stored in pre-allocated storage

• quick service and reply, e.g., remote-fetch

data IP

Node

Handler

Primary
Computation

Idea:

Associate a small amount
of remote computation
with each message

Note: user-level handler

CS 740 F’98– 29 –

Active Message Example: Fetch&Add

int FetchNAdd(int proc,
int *addr, int inc)

{
flag = 0;
AM(proc, FetchNAdd_h,

addr, inc, MYPROC);
while(!flag) ;
return value;

}

void FetchNAdd_h(int *addr,
int inc, int retproc)

{
int v = inc + *addr;
*addr = v;
AM_reply(retproc,

FetchNAdd_rh, v);
}void FetchNAdd_rh(int data)

{
value = data;
flag++;

}

static volatile int value;
static volatile int flag;

CS 740 F’98– 30 –

Send/Receive Using Active Messages

MatchTablecompute

send

compute

receive

Node 1 Node 2

send
handler

recv
handler

data
handler

Req To Send

Ready To Recv

DATA

–> use handlers to
implement protocol

Reduces send+recv overhead from 95 µsec to 3 µsec on CM-5.

