CS740
Dec. 3, 1998
Special Presentation of

A Performance Study of
BDD-Based Model Checking

Bwolen Yang

Randal E. Bryant, David R. O’Hallaron,
Armin Biere, Olivier Coudert, Geert Janssen
Rajeev K. Ranjan, Fabio Somenzi

Outline

BDD Background
= Data structure
= Algorithms
Organization of this Study
= participants, benchmarks, evaluation process
BDD Evaluation Methodology
= evaluation platform
= Mmetrics
Experimental Results

= performance improvements
= characterizations of MC computations

Boolean Manipulation with OBDDs

= Ordered Binary Decision Diagrams

= Data structure for representing Boolean functions

= Efficient for many functions found in digital designs
= Canonical representation

Example:

(%, Uxy) &x4

m Nodes represent variable tests

m Branches represent variable values
Dashed for value 0
Solid for value 1

Example OBDDs

Variable

Constants

0

1

Unique unsatisfiable function

Unique tautology

Typical Function

m (X, UX,) &x,
m No vertex labeled x,

m independent of x,

m Many subgraphs
shared

Q

0

1

Treat variable
as function

Odd Parity

Linear
representation

Symbolic Manipulation with OBDDs

Strategy

= Represent data as set of OBDDs
m Identical variable orderings

m Express solution method as sequence of symbolic operations
= Implement each operation by OBDD manipulation
= Information always maintained in reduced, canonical form
Algorithmic Properties
= Arguments are OBDDs with identical variable orderings.
= Result is OBDD with same ordering.
0 “Closure Property”

Treat as Abstract Data Type
= User not concerned with underlying representation

|- Then-Else Operation

Concept
= Apply Boolean choice operation to 3 argument functions

I ® T.E Arguments |, T, E
| | m Functions over variables X
m Represented as OBDDs
MUX Result
EF20 m OBDD representing composite
function

B | XT + >

\4

Implementation
= Combination of depth-first traversal and dynamic
programming.
= Maintain computed cache of previously encountered argument /
result combinations

= Worst case complexity product of argument graph sizes.

Derived Algebraic Operations

s Other common operations can be expressed in terms of If-Then-Else

And(F, G) If-Then-Else(F, G, 0)
F®G,O0
F
F
* X g - 1
G MUX >
0—>{ 0

If-Then-Else(F, 1, G)

F®1G
F

F
X X 1— 1
G MUX >
G > 0

Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

Network Evaluation

A >_T1 A - new_var ("a");
| > B "BH"Y;
B —] — :> o1 - new var ("b"):
>_ — C - new_ var ("c");

C—/+—— T Tl - And (A, B);

T2 - And (B, C);

Ol - Or (T, T2);

Resulting Graphs

! | |

QR K

o] (1[0 1110 |1

Checking Network Equivalence

= Determine: Do 2 networks compute same Boolean
function?

= Method: Compute OBDDs for both networks and compare

Alternate Network Evaluation
T3 =~ Or (A, C);

T3
2:) v 02 - And (T3, B):
5 >— 02

if (02 ==01)
then Equivalent
else Different

Resulting Graphs

2 R

0 1110 1

Symbolic FSM Representation

Nondeterministic FSM Symbolic Representation

X input

01,0, encoded
o%d state

n{, N, encoded
new state

= Represent set of transitions as function d(x, o, n)
= Yields 1 if input x can cause transition from state o to state n.

= Represent as Boolean function
= Over variables encoding states and inputs

Reachability Analysis

Task

= Compute set of states reachable from initial state QO
= Represent as Boolean function R(s).
= Never enumerate states explicitly

Given

input =—>
old state ==

new state ===

Compute
5 0/1 state —)@—‘ 0/1
Initial
Ro

\ 4

-

Iterative Computation

s — R

®-: —\.

—/ /

= R,,, —set of states that can be reached i +1 transitions
= Either in R,
= or single transition away from some element of R,
= for some input

= Continue iterating until R, = R, .,

Restriction Operation

Concept
= Effect of setting function argument x;, to constant k (0 or 1).

Kk —— F —>F[Xi:k]

Implementation
= Depth-first traversal.
= Complexity linear in argument graph size

Variable Quantification

X177
X1—> ! Xj 177 .
Xj_1—> Xi+17%7
s =
Xi+17.7 Xn =
X1
Xn —| L.
Xj —1—>
0 > F
Xj +1T>
Xp ~—>

= Eliminate dependency on some argument through
guantification

= Same as step used in resolution-based prover
= Combine with AND for universal quantification.

Multi-Variable Quantification

Operation
= Compute: $XF (X, Y)
m X Vector of bound variables x,, ..., X,
mY Vector of free variablesy,, ...,y
= Result:

= Function of free variables Y only
myields 1if F (X, Y) would yield 1 for some assignment to variables X

Methods
= Sequentially
— X [$X, [... $x [F (X, Y)I...T]
= Simultaneously, by recursive algorithm over BDD for F
Complexity
= Each quantification can at most square graph size
= Typically not so bad

Motivation for Studying
Symbolic Model Checking (MC)

MC is an important part of formal verification
= digital circuits and other finite state systems
= BDDs are an enabling technology for MC

Not well studied
= Packages are tuned using combinational circuits (CC)

Qualitative differences between CC and MC computations
= CC: build outputs, constant time equivalence checking
= MC: build model, many fixed-points to verify the specs
= CC: BDD algorithms are polynomial
n If-Then-Else algorithm
= MC: key BDD algorithms are exponential
= Multi-variable quantification

BDD Data Structures

BDD

= Multi-rooted DAG
m Each root denotes different Boolean function

= Provide automatic memory management
m Garbage collection based on reference counting

V
Unique Table
= Provides mapping [X, Vy, V] ® Vv ,%
= Required to make sure graph is canonical VoO Vq
Computed Cache

= Provides memoization of argument / results

= Reduce manipulation algorithms from exponential to
polynomial

= Periodically flush to avoid excessive growth

| nteractions Between Data Structures

Dead Nodes
m Reference Count® 0

= No references by other nodes or by top-level pointers
m Decrement reference counts of children
m Could cause death of entire subgraph

= Still have invisible reference from unique table

Garbage Collection
= Eliminate all dead nodes
= Remove entries from unique table

Rebirth

m Possible to resurrect node considered dead
= From hitin unique table

s Must increment child reference counts
m Could cause rebirth of subgraph

Organization of this Study:
Participants

Armin Biere: ABCD

Carnegie Mellon / Universitat Karlsruhe

Olivier Coudert: TiGeR
Synopsys / Monterey Design Systems

Geert Janssen: EHV

Eindhoven University of Technology

Rajeev K. Ranjan: CAL
Synopsys

Fabio Somenzi: CUDD

University of Colorado

Bwolen Yang: PBF

Carnegie Mellon

Organization of this Study: Setup

Metrics: 17 statistics

Benchmark: 16 SMV execution traces

= traces of BDD-calls from verification of

m cache coherence, Tomasulo, phone, reactor, TCAS...
= Size

= 6 million - 10 billion sub-operations

= 1-600 MB of memory

m Gives 6 * 16 = 96 different cases

Evaluation platform: trace driver
= “drives” BDD packages based on execution trace

Organization of this Study:
Evaluation Process

Phase 1: no dynamic variable reordering
Phase 2: with dynamic variable reordering

Iterative Process

identify suggest
issues improvements

_ design
hypothesize

validate

BDD Evaluation Methodology
Metrics: Time

elapsed time
(performance

page fault
rate
BDD Alg time
usage
Challenge

= Effect of given optimization
uncertain

= E.g., decreasing #GCs
would save CPU time, but
Increase page faults

computed
cache size

BDD Evaluation Methodology
Metrics. Space

memory
usage
max # of computed
BDD nodes cache size

Time/Space Trade-Offs
= Cache size
= GC frequency

Phase 1 Results: Initial / Final

n/a - : I O 13

___________________________________ x B 6

. 1e+5) A 1

E let+d ' O 76
g le+s speedups
g . . >100: 6
E ; 10 - 100: 16
1o+ \ | | é | 5- 10: 11
1e+1 1e+2 1e+3 1etd 1et5 n/a 2- 5:28

final time (sec)

Conclusion: collaborative efforts have led to significant
performance improvements

Phase 1: Before/After

Cumulative Speedup Histogram

61
60 -
40 - 33
B0,
20*6 6
0 =
O O I N — 0 9O T o
S 7 A~ M g 28
A < s
speedups

6 packages * 16 traces = 96 cases

Phase 1. Hypotheses / Experiments

Computed Cache
= effects of computed cache size
= humber of repeated sub-problems across time

Garbage Collection
m reachable /unreachable

Complement Edge Representation
= Work
= sSpace

Memory Locality for Breadth-First Algorithms

Phase 1:
Hypotheses / Experiments (Cont’ d)

For Comparison
m ISCAS85 combinational circuits (> 5 sec, < 1GB)
m C2670, c3540
= 13-bit, 14-bit multipliers based on c6288
Metric depends only on the trace and BDD algorithms
= Mmachine-independent
= implementation-independent

Computed Cache Size Dependency

Hypothesis
= The computed cache is more important for MC than for CC.

Experiment

= Vary the cache size and measure its effects on work.
m Size as a percentage of BDD nodes
= normalize the result to minimum amount of work
m necessary; i.e., no GC and complete cache.

Effects of Computed Cache Size

MC Traces ISCASS85 Circuits
1e+4 - 1e+4 -
2 % g
= 1e+2 - = 1e+2 -
B B
E 1e+1 % # 1e+1 -
\
1e+0 \ \ l 1e+0 \ I l
10% 20% 40% 80% 10% 20% 40% 80%
cache size cache size

of ops: normalized to the minimum number of operations
cache size: % of BDD nodes

Conclusion: large cache is important for MC

Computed Cache:
Repeated Sub-problems Across Time

Source of Speedup
= increase computed cache size

Possible Cause
= Mmany repeated sub-problems are far apart in time

Validation

= study the number of repeated sub-problems across user issued
operations (top-level operations).

Hypothesis. Top-Level Sharing

Hypothesis
= MC computations have a large number of repeated
= Sub-problems across the top-level operations.

Experiment

= Mmeasure the minimum number of operations with GC disabled
and complete cache.

= compare this with the same setup, but cache is flushed
between top-level operations.

Results on Top-Level Sharing

100 -

#iobfopyss
([RLESH /TR)

P | [T
Model Checking Traces ISCAS85

flush: cache flushed between top-level operations
min: cache never flushed

Conclusion: large cache is more important for MC

Garbage Collection: Rebirth Rate

Source of Speedup
= reduce GC frequency

Possible Cause

= many dead nodes become reachable again (rebirth)
s GC is delayed until the number of dead nodes reaches a threshold

m dead nodes are reborn when they are part of the result of new sub-
problems

Hypothesis. Rebirth Rate

Hypothesis
= MC computations have very high rebirth rate.

Experiment
m mMmeasure the number of deaths and the number of rebirths

Results on Rebhirth Rate

1 -
0.8 -
0.6 -
0.4 -

0.2

inehiitins / dieatings

.
.
.
.
.
.
R
.
.
B
.
.
Ry
.
.
R
.
.
.
.
.
.
.
.
.
.
R
.
.
B
.
.
Ry
.
.
R
.

Model Checking Traces ISCAS85

04
Conclusions

= delay garbage collection
= triggering GC should not be based only on # of dead nodes
m Just because a lot of nodes are dead doesn’'t mean they’re useless
= delay updating reference counts
= High cost to kill/resurrect subgraphs

BF BDD Construction

On MC traces, breadth-first based BDD
construction has no demonstrated advantage over
traditional depth-first based techniques.

Two packages (CAL and PBF) are BF based.

BF BDD Construction Overview

Level-by-Level Access
= oOperations on same level (variable) are processed together
= One queue per level

Locality

= group nodes of the same level together in memory
Good memory locality due to BF b

m # 0of ops processed per queue visit must be high

Average BF Locality

5000 -

4000

3000 - -
2000 - N -
:

1000 - M
O

O :
Model Checking Traces ISCAS85

#Hobfopmessproressesd

Conclusion: MC traces generally have less BF locality

Average BF Locality / Work

Model Checking Traces ISbAS85

Conclusion: For comparable BF locality,
MC computations do much more work.

Phase 1.
Some Issues / Open Questions

Memory Management
= Space-time tradeoff
m computed cache size / GC frequency

m esource awareness
= available physical memory, memory limit, page fault rate

Top-Level Sharing

= possibly the main cause for
m strong cache dependency
= high rebirth rate
= better understanding may lead to
= better memory management
= higher level algorithms to exploit the pattern

Phase 2:

Dynamic Variable Reordering

BDD Packages Used
= CAL, CUDD, EHV, TiGeR
= Improvements from phase 1 incorporated

Variable Ordering Sensitivity

= BDD unique for given variable order
= Ordering can have large effect on size
= Finding good ordering essential

(a Uby)U
(a, Uby) U
(ag Ubs)

Dynamic Variable Ordering

= Rudell, ICCAD ‘93

Concept
= Variable ordering changes as computation progresses
m Typical application involves long series of BDD operations
= Proceeds in background, invisible to user

Implementation

= When approach memory limit, attempt to reduce
s Garbage collect unneeded nodes
m Attempt to find better order for variables

= Simple, greedy reordering heuristics
= Ongoing improvements

Reordering By Sifting

m Choose candidate variable
= Try all positions in variable ordering Choices

m Repeatedly swap with adjacent variable
= Move to best position found

Swapping Adjacent Variables

Localized Effect
= Add /delete/ alter only nodes labeled by swapping variables
= Do not change any incoming pointers

Dynamic Ordering Characteristics

Added to Many BDD Packages

s Compatible with existing interfaces
= User need not be aware that it is happening

Significant Improvement in Memory Requirement
= Limiting factor in many applications
= Reduces need to have user worry about ordering
= Main costis in CPU time
= Acceptable trade-off
= May run 10X slower
Compatible with Other Extensions
= Now part of “core technology”

Why Is Variable Reordering
Hard to Study

Time-space tradeoff
= how much time to spent to reduce graph sizes
Chaotic behavior

= e.g., small changes to triggering / termination criteria
= can have significant performance impact

Resource intensive
= reordering Iis expensive
= space of possible orderings is combinatorial

Different variable order b different computation

= e.g., many “don’t-care space” optimization algorithms

BDD Evaluation Methodology
Metrics: Time

elapsed time
(performance)

page fault
rate
memory
usage

reordering
time

of node swaps
(reorder cost)

computed # of
cache size reorderings

BDD Evaluation Methodology
Metrics. Space

memory
usage
max # of computed
BDD nodes cache size
reordering
time

Phase 2.
Experiments

Quality of Variable Order Generated
Variable Grouping Heuristic
s keep strongly related variables adjacent

Reorder Transition Relation
= BDDs for the transition relation are used repeatedly

Effects of Initial Variable Order
= with and without variable reordering

Only CUDD is used

Effects of Initial Variable Order:
Perturbation Algorithm

Perturbation Parameters (p, d)

= p: probability that a variable will be perturbed

= d: perturbation distance
Properties

= in average, p fraction of variables is perturbed

= Mmax distance moved is 2d

= (p=1,d=¥)P completely random variable order
For each perturbation level (p, d)

= generate a number (sample size) of variable orders

Effects of Initial Variable Order:
Parameters

Parameter Values
= p:(0.1,0.2,..,1.0)
= d: (10, 20, ..., 100, ¥)
= Sample size: 10
For each trace
= 1100 orderings
= 2200 runs (w/ and w/o dynamic reordering)

Effects of Initial Variable Order:
Smallest Test Case

Base Case (best ordering)
s time: 13 sec
= memory: 127 MB
Resource Limits on Generated Orders

m time: 128x base case
= memory: 500 MB

Effects of Initial Variable Order:
Result

—A— ootk

1200

800

400 # of unfinished cases

#Hobfeasess

0] | | | | | | |
>1x >2x >4x >8x >16x >32x >64x >128x

time limit
At 128x/500MB limit, “no reorder” finished 33%,

“reorder” finished 90%.
Conclusion: dynamic reordering is effective

> 4x or > 500Mb

No Reorder Reorder

distance distance

Conclusions: For very low perturbation, reordering does not work well.
Overall, very few cases get finished.

> 32x or > 500Mb

Reorder

No Reorder

distance

distance

Conclusion: variable reordering worked rather well

Phase 2:
Some Issues / Open Questions

Computed Cache Flushing
m COSt

Effects of Initial Variable Order
= determine sample size

Need New Better Experimental Design

Summary

Collaboration + Evaluation Methodology

= significant performance improvements
= Up to 2 orders of magnitude
= characterization of MC computation
= computed cache size
= garbage collection frequency
m effects of complement edge
= BF locality
m effects of reordering the transition relation
m effects of initial variable orderings
= other general results (not mentioned in this talk)

= Issues and open guestions for future research

Conclusions

Rigorous quantitative analysis can lead to:
= dramatic performance improvements
= better understanding of computational characteristics

Adopt the evaluation methodology by:

= building more benchmark traces
m for IP issues, BDD-call traces are hard to understand

= using /improving the proposed metrics for future evaluation

For data and BDD traces used in this study,
http://www.cs.cmu.edu/~bwolen/fmcad98/

