
A Performance Study of
BDD-Based Model Checking

Bwolen Yang

Randal E. Bryant, David R. O’Hallaron,
Armin Biere, Olivier Coudert, Geert Janssen

Rajeev K. Ranjan, Fabio Somenzi

CS740
Dec. 3, 1998

Special Presentation of

Outline

BDD Background
■ Data structure
■ Algorithms

Organization of this Study
■ participants, benchmarks, evaluation process

BDD Evaluation Methodology
■ evaluation platform
■ metrics

Experimental Results
■ performance improvements
■ characterizations of MC computations

Boolean Manipulation with OBDDs

■ Ordered Binary Decision Diagrams
■ Data structure for representing Boolean functions
■ Efficient for many functions found in digital designs
■ Canonical representation

Example: (x1 ∨ x2) &x3

■ Nodes represent variable tests
■ Branches represent variable values

Dashed for value 0

Solid for value 1

x2

0 1

x3

x1

Example OBDDs
Constants

Unique unsatisfiable function

Unique tautology

Variable

Treat variable
as function

Odd Parity

Linear
representation

Typical Function

1

0

0 1

x

x2

x3

x4

10

x4

x3

x2

x1

x2

0 1

x4

x1 ■ (x1 ∨ x2) &x4

■ No vertex labeled x3

■ independent of x3

■ Many subgraphs
shared

Symbolic Manipulation with OBDDs

Strategy
■ Represent data as set of OBDDs

■ Identical variable orderings

■ Express solution method as sequence of symbolic operations
■ Implement each operation by OBDD manipulation
■ Information always maintained in reduced, canonical form

Algorithmic Properties
■ Arguments are OBDDs with identical variable orderings.
■ Result is OBDD with same ordering.
✦ “Closure Property”

Treat as Abstract Data Type
■ User not concerned with underlying representation

If-Then-Else Operation

Arguments I, T, E
■ Functions over variables X
■ Represented as OBDDs

Result
■ OBDD representing composite

function
■ I ⋅ T + ¬I ⋅ E

Concept
■ Apply Boolean choice operation to 3 argument functions

Implementation
■ Combination of depth-first traversal and dynamic

programming.
■ Maintain computed cache of previously encountered argument /

result combinations

■ Worst case complexity product of argument graph sizes.

MUX
1

0

I → T, E

X

I

T

E

And(F, G)

X

F

G MUX
1

0

F → G, 0

X

F

G

0

X

F

G MUX
1

0

F → 1, G

X

F

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

Derived Algebraic Operations
■ Other common operations can be expressed in terms of If-Then-Else

Generating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.

Resulting Graphs

A ← new_var ("a");
B ← new_var ("b");
C ← new_var ("c");
T1 ← And (A, B);
T2 ← And (B, C);
O1 ← Or (T1, T2);

A

B

C

T1

T2

O1

A B C
T1 T2

O1

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

Checking Network Equivalence

Alternate Network Evaluation

Resulting Graphs

■ Determine: Do 2 networks compute same Boolean
function?

■ Method: Compute OBDDs for both networks and compare

A

B

C

T3

O2

A B C
T3

O2

c

b

0 1

b

a

0 1

a c

0 10 1

b

0 1

a

c

T3 ← Or (A, C);
O2 ← And (T3, B);
if (O2 == O1)

then Equivalent
else Different

Symbolic FSM Representation
Nondeterministic FSM Symbolic Representation

■ Represent set of transitions as function δ(x, o, n)
■ Yields 1 if input x can cause transition from state o to state n.

■ Represent as Boolean function
■ Over variables encoding states and inputs

o2

n1

o1

1

n2

0

n1

x

x input

o1,o2 encoded
old state

n1, n2 encoded
new state

A B

C
01,11

00 10

01

1

0

0,1 0

Reachability Analysis

Rstate 0/1δ
input

old state

new state

0/1

Task
■ Compute set of states reachable from initial state Q0
■ Represent as Boolean function R(s).
■ Never enumerate states explicitly

Given Compute

Initial
R0

=

Q0

Iterative Computation

Ri

δ

Ri

∃

Ri +1

in

old

new

∃

■ Ri +1 – set of states that can be reached i +1 transitions
■ Either in Ri

■ or single transition away from some element of Ri

■ for some input

■ Continue iterating until Ri = Ri +1

Restriction Operation

Implementation
■ Depth-first traversal.
■ Complexity linear in argument graph size

Concept
■ Effect of setting function argument xi to constant k (0 or 1).

k F
xi –1

xi +1

xn

x1

F [xi =k]

Variable Quantification

■ Eliminate dependency on some argument through
quantification

■ Same as step used in resolution-based prover
■ Combine with AND for universal quantification.

xi –1

xi +1

xn

x1

F ∃ ∃ xi F

1 F

0 F

xi –1

xi +1

xn

x1

xi –1

xi +1

xn

x1

Multi-Variable Quantification
Operation

■ Compute: ∃ X F (X, Y)
■ X Vector of bound variables x1, …, xn

■ Y Vector of free variables y1, …, ym

■ Result:
■ Function of free variables Y only
■ yields 1 if F (X, Y) would yield 1 for some assignment to variables X

Methods
■ Sequentially

– ∃ x1[∃ x 2 [… ∃ xn [F (X, Y)]…]]

■ Simultaneously, by recursive algorithm over BDD for F

Complexity
■ Each quantification can at most square graph size
■ Typically not so bad

Motivation for Studying
Symbolic Model Checking (MC)

MC is an important part of formal verification
■ digital circuits and other finite state systems
■ BDDs are an enabling technology for MC

Not well studied
■ Packages are tuned using combinational circuits (CC)

Qualitative differences between CC and MC computations
■ CC: build outputs, constant time equivalence checking
■ MC: build model, many fixed-points to verify the specs
■ CC: BDD algorithms are polynomial

■ If-Then-Else algorithm

■ MC: key BDD algorithms are exponential
■ Multi-variable quantification

BDD Data Structures

BDD
■ Multi-rooted DAG

■ Each root denotes different Boolean function

■ Provide automatic memory management
■ Garbage collection based on reference counting

Unique Table
■ Provides mapping [x, v0, v1] → v

■ Required to make sure graph is canonical

Computed Cache
■ Provides memoization of argument / results
■ Reduce manipulation algorithms from exponential to

polynomial
■ Periodically flush to avoid excessive growth

x

v0 v1

v

Interactions Between Data Structures

Dead Nodes
■ Reference Count → 0

■ No references by other nodes or by top-level pointers
■ Decrement reference counts of children

■ Could cause death of entire subgraph

■ Still have invisible reference from unique table

Garbage Collection
■ Eliminate all dead nodes
■ Remove entries from unique table

Rebirth
■ Possible to resurrect node considered dead
■ From hit in unique table
■ Must increment child reference counts

■ Could cause rebirth of subgraph

Organization of this Study:
Participants

Armin Biere: ABCD
Carnegie Mellon / Universität Karlsruhe

Olivier Coudert: TiGeR
Synopsys / Monterey Design Systems

Geert Janssen: EHV
Eindhoven University of Technology

Rajeev K. Ranjan: CAL
Synopsys

Fabio Somenzi: CUDD
University of Colorado

Bwolen Yang: PBF
Carnegie Mellon

Organization of this Study: Setup

Metrics: 17 statistics
Benchmark: 16 SMV execution traces

■ traces of BDD-calls from verification of
■ cache coherence, Tomasulo, phone, reactor, TCAS…

■ size
■ 6 million - 10 billion sub-operations
■ 1 - 600 MB of memory

■ Gives 6 * 16 = 96 different cases

Evaluation platform: trace driver
■ “drives” BDD packages based on execution trace

Organization of this Study:
Evaluation Process

Phase 1: no dynamic variable reordering

Phase 2: with dynamic variable reordering

hypothesize
design

experiments validate

collect
stats

identify
issues

suggest
improvements validate

Iterative Process

BDD Evaluation Methodology
Metrics: Time

elapsed time
(performance)

CPU time page fault
rate

BDD Alg timeGC time

of GCs

memory
usage

of ops
(work)

computed
cache size

Challenge
■ Effect of given optimization

uncertain
■ E.g., decreasing #GCs

would save CPU time, but
increase page faults

memory
usage

of GCs

computed
cache size

max # of
BDD nodes

BDD Evaluation Methodology
Metrics: Space

Time/Space Trade-Offs
■ Cache size
■ GC frequency

Phase 1 Results: Initial / Final

Conclusion: collaborative efforts have led to significant
performance improvements

1

6

13

76

speedups
 > 100: 6
10 - 100: 16
 5 - 10: 11
 2 - 5: 28

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6

final time (sec)

in
iti

al
 ti

m
e

(s
ec

)

1x10x100x

n/a

n/a

s

Phase 1: Before/After

6 packages * 16 traces = 96 cases

22
33

61

75 76 76

13
6 1

6

0

20

40

60

80

>
10

0

>
10 >

5

>
2

>
1

>
0.

95 >
0

ne
w

fa
ile

d

ba
d

speedups

of

 c
as

es

Cumulative Speedup Histogram

Phase 1: Hypotheses / Experiments

Computed Cache
■ effects of computed cache size
■ number of repeated sub-problems across time

Garbage Collection
■ reachable / unreachable

Complement Edge Representation
■ work
■ space

Memory Locality for Breadth-First Algorithms

Phase 1:
Hypotheses / Experiments (Cont’d)

For Comparison
■ ISCAS85 combinational circuits (> 5 sec, < 1GB)

■ c2670, c3540
■ 13-bit, 14-bit multipliers based on c6288

Metric depends only on the trace and BDD algorithms
■ machine-independent
■ implementation-independent

Computed Cache Size Dependency

Hypothesis
■ The computed cache is more important for MC than for CC.

Experiment
■ Vary the cache size and measure its effects on work.

■ size as a percentage of BDD nodes
■ normalize the result to minimum amount of work
■ necessary; i.e., no GC and complete cache.

Effects of Computed Cache Size

of ops: normalized to the minimum number of operations

cache size: % of BDD nodes

MC Traces

1e+0

1e+1

1e+2

1e+3

1e+4

10% 20% 40% 80%

cache size

of

 o
ps

ISCAS85 Circuits

1e+0

1e+1

1e+2

1e+3

1e+4

10% 20% 40% 80%

cache size

of
 o

ps

Conclusion: large cache is important for MC

Computed Cache:
Repeated Sub-problems Across Time
Source of Speedup

■ increase computed cache size

Possible Cause
■ many repeated sub-problems are far apart in time

Validation
■ study the number of repeated sub-problems across user issued

operations (top-level operations).

Hypothesis: Top-Level Sharing

Hypothesis
■ MC computations have a large number of repeated
■ sub-problems across the top-level operations.

Experiment
■ measure the minimum number of operations with GC disabled

and complete cache.
■ compare this with the same setup, but cache is flushed

between top-level operations.

flush: cache flushed between top-level operations
min: cache never flushed

Conclusion: large cache is more important for MC

1

10

100

Model Checking Traces ISCAS85

of

 o
ps

(f
lu

sh
 /

m
in

)

Results on Top-Level Sharing

Garbage Collection: Rebirth Rate

Source of Speedup
■ reduce GC frequency

Possible Cause
■ many dead nodes become reachable again (rebirth)

■ GC is delayed until the number of dead nodes reaches a threshold
■ dead nodes are reborn when they are part of the result of new sub-

problems

Hypothesis: Rebirth Rate

Hypothesis
■ MC computations have very high rebirth rate.

Experiment
■ measure the number of deaths and the number of rebirths

0

0.2

0.4

0.6

0.8

1

Model Checking Traces ISCAS85

re
bi

rt
hs

 /
de

at
hs

Results on Rebirth Rate

Conclusions
■ delay garbage collection
■ triggering GC should not be based only on # of dead nodes

■ Just because a lot of nodes are dead doesn’t mean they’re useless

■ delay updating reference counts
■ High cost to kill/resurrect subgraphs

BF BDD Construction

On MC traces, breadth-first based BDD

construction has no demonstrated advantage over

traditional depth-first based techniques.

Two packages (CAL and PBF) are BF based.

BF BDD Construction Overview

Level-by-Level Access
■ operations on same level (variable) are processed together
■ one queue per level

Locality
■ group nodes of the same level together in memory

Good memory locality due to BF ⇒
■ # of ops processed per queue visit must be high

Average BF Locality

Conclusion: MC traces generally have less BF locality

0

1000

2000

3000

4000

5000

Model Checking Traces ISCAS85

of

 o
ps

 p
ro

ce
ss

ed
pe

r
qu

eu
e

vi
si

t

Average BF Locality / Work

Conclusion: For comparable BF locality,
MC computations do much more work.

0

50

100

150

200

250

Model Checking Traces ISCAS85

av
g.

 lo
ca

lit
y

/ #
 o

f o
ps

(x
 1

e-
6)

Phase 1:
Some Issues / Open Questions

Memory Management
■ space-time tradeoff

■ computed cache size / GC frequency

■ resource awareness
■ available physical memory, memory limit, page fault rate

Top-Level Sharing
■ possibly the main cause for

■ strong cache dependency
■ high rebirth rate

■ better understanding may lead to
■ better memory management
■ higher level algorithms to exploit the pattern

Phase 2:
Dynamic Variable Reordering

BDD Packages Used
■ CAL, CUDD, EHV, TiGeR
■ improvements from phase 1 incorporated

Variable Ordering Sensitivity
■ BDD unique for given variable order
■ Ordering can have large effect on size
■ Finding good ordering essential

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 ∧ b1() ∨

a2 ∧ b2() ∨

a3 ∧ b3()

Dynamic Variable Ordering

■ Rudell, ICCAD ‘93

Concept
■ Variable ordering changes as computation progresses

■ Typical application involves long series of BDD operations

■ Proceeds in background, invisible to user

Implementation
■ When approach memory limit, attempt to reduce

■ Garbage collect unneeded nodes
■ Attempt to find better order for variables

■ Simple, greedy reordering heuristics
■ Ongoing improvements

Reordering By Sifting

■ Choose candidate variable
■ Try all positions in variable ordering

■ Repeatedly swap with adjacent variable

■ Move to best position found

a3

b2 b2

a3

a2

a3

b1

b2

0

b3

b1

1

b2

a3

a2

a1

a3

b2

b3

b2

a3

a2

a3

b2

0

b1

b3

1

b2

a3

a2

a1

a2

a3

b1

b2

0

b3

b2

a3

1

b1

a2

a1

a3

b2

0

b3

b2

a3

a2

1

b1

a1

a3

b2

0

b3

b2

a3

a2

1

a1

b1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

• • •

Best
Choices

Swapping Adjacent Variables

Localized Effect
■ Add / delete / alter only nodes labeled by swapping variables
■ Do not change any incoming pointers

b1 b1

b2

b1

b2

b1

e f

g h i j

b1 b1

b2b2 b2b2

e f g h

i j

Dynamic Ordering Characteristics

Added to Many BDD Packages
■ Compatible with existing interfaces
■ User need not be aware that it is happening

Significant Improvement in Memory Requirement
■ Limiting factor in many applications
■ Reduces need to have user worry about ordering
■ Main cost is in CPU time

■ Acceptable trade-off
■ May run 10X slower

Compatible with Other Extensions
■ Now part of “core technology”

Why is Variable Reordering
Hard to Study

Time-space tradeoff
■ how much time to spent to reduce graph sizes

Chaotic behavior
■ e.g., small changes to triggering / termination criteria
■ can have significant performance impact

Resource intensive
■ reordering is expensive
■ space of possible orderings is combinatorial

Different variable order ⇒ different computation
■ e.g., many “don’t-care space” optimization algorithms

BDD Evaluation Methodology
Metrics: Time

elapsed time
(performance)

CPU time page fault
rate

BDD Alg timeGC time
reordering

time

of GCs
of node swaps

(reorder cost)

memory
usage

of ops
(work)

of
reorderings

computed
cache size

BDD Evaluation Methodology
Metrics: Space

memory
usage

of GCs
 reordering

time

computed
cache size

max # of
BDD nodes

Only CUDD is used

Phase 2:
Experiments

Quality of Variable Order Generated
Variable Grouping Heuristic

■ keep strongly related variables adjacent

Reorder Transition Relation
■ BDDs for the transition relation are used repeatedly

Effects of Initial Variable Order
■ with and without variable reordering

Effects of Initial Variable Order:
Perturbation Algorithm

Perturbation Parameters (p, d)
■ p: probability that a variable will be perturbed
■ d: perturbation distance

Properties
■ in average, p fraction of variables is perturbed
■ max distance moved is 2d
■ (p = 1, d = ∞) ⇒ completely random variable order

For each perturbation level (p, d)
■ generate a number (sample size) of variable orders

Effects of Initial Variable Order:
Parameters

Parameter Values
■ p: (0.1, 0.2, …, 1.0)
■ d: (10, 20, …, 100, ∞)

■ sample size: 10

For each trace
■ 1100 orderings
■ 2200 runs (w/ and w/o dynamic reordering)

Effects of Initial Variable Order:
Smallest Test Case

Base Case (best ordering)
■ time: 13 sec
■ memory: 127 MB

Resource Limits on Generated Orders
■ time: 128x base case
■ memory: 500 MB

At 128x/500MB limit, “no reorder” finished 33%,
 “reorder” finished 90%.

Conclusion: dynamic reordering is effective

0

400

800

1200

>1x >2x >4x >8x >16x >32x >64x >128x

time limit

of

 c
as

es
no reorder

reorder

Effects of Initial Variable Order:
Result

of unfinished cases

> 4x or > 500Mb

Conclusions: For very low perturbation, reordering does not work well.

 Overall, very few cases get finished.

1030507090in
f

1.0
0.7

0.4

0.10

2

4

6

8

10

of

 c
as

es

distance

pr
ob

No Reorder

1030507090in
f

1.0
0.7

0.4

0.10

2

4

6

8

10

of

 c
as

es

distance

pr
ob

Reorder

> 32x or > 500Mb

Conclusion: variable reordering worked rather well

1030507090in
f

1.0

0.7

0.4

0.1
0

2

4

6

8

10

of

 c
as

es

distance

pr
ob

No Reorder

1030507090in
f

1.0

0.7

0.4

0.1
0

2

4

6

8

10

of

 c
as

es

distance

pr
ob

Reorder

Phase 2:
Some Issues / Open Questions

Computed Cache Flushing
■ cost

Effects of Initial Variable Order
■ determine sample size

Need New Better Experimental Design

Summary

Collaboration + Evaluation Methodology
■ significant performance improvements

■ up to 2 orders of magnitude

■ characterization of MC computation
■ computed cache size
■ garbage collection frequency
■ effects of complement edge
■ BF locality
■ effects of reordering the transition relation
■ effects of initial variable orderings

■ other general results (not mentioned in this talk)
■ issues and open questions for future research

For data and BDD traces used in this study,
http://www.cs.cmu.edu/~bwolen/fmcad98/

Conclusions

Rigorous quantitative analysis can lead to:
■ dramatic performance improvements
■ better understanding of computational characteristics

Adopt the evaluation methodology by:
■ building more benchmark traces

■ for IP issues, BDD-call traces are hard to understand

■ using / improving the proposed metrics for future evaluation

