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Boolean Manipulation with OBDDs

■ Ordered Binary Decision Diagrams
■ Data structure for representing Boolean functions
■ Efficient for many functions found in digital designs
■ Canonical representation

Example: (x1 ∨ x2) &x3

■ Nodes represent variable tests
■ Branches represent variable values
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Example OBDDs
Constants

Unique unsatisfiable function

Unique tautology

Variable

Treat variable
as function

Odd Parity

Linear
representation
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■ No vertex labeled x3

■ independent of x3
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Symbolic Manipulation with OBDDs

Strategy
■ Represent data as set of OBDDs

■ Identical variable orderings

■ Express solution method as sequence of symbolic operations
■ Implement each operation by OBDD manipulation
■ Information always maintained in reduced, canonical form

Algorithmic Properties
■ Arguments are OBDDs with identical variable orderings.
■ Result is OBDD with same ordering.
✦ “Closure Property”

Treat as Abstract Data Type
■ User not concerned with underlying representation



If-Then-Else Operation

Arguments I, T, E
■ Functions over variables X
■ Represented as OBDDs

Result
■ OBDD representing composite

function
■ I ⋅ T  + ¬I ⋅ E

Concept
■ Apply Boolean choice operation to 3 argument functions

Implementation
■ Combination of depth-first traversal and dynamic

programming.
■ Maintain computed cache of previously encountered argument /

result combinations

■ Worst case complexity product of argument graph sizes.
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Derived Algebraic Operations
■ Other common operations can be expressed in terms of If-Then-Else



Generating OBDD from Network

Network Evaluation

Task:  Represent output functions of gate network as OBDDs.

Resulting Graphs

A ←  new_var ("a");
B ←  new_var ("b");
C ←  new_var ("c");
T1 ←  And (A, B);
T2  ←  And (B, C);
O1 ←  Or (T1, T2);

A

B

C

T1

T2

O1

A B C
T1 T2

O1

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a



Checking Network Equivalence

Alternate Network Evaluation

Resulting Graphs

■ Determine:  Do 2 networks compute same Boolean
function?

■ Method: Compute OBDDs for both networks and compare
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T3 ←  Or (A, C);
O2  ←  And (T3, B);
if (O2 == O1)

then Equivalent
else Different



Symbolic FSM Representation
Nondeterministic FSM Symbolic Representation

■ Represent set of transitions as function δ(x, o, n)
■ Yields 1 if input x can cause transition from state o to state n.

■ Represent as Boolean function
■ Over variables encoding states and inputs
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Reachability Analysis

Rstate 0/1δ
input

old state

new state

0/1

Task
■ Compute set of states reachable from initial state Q0
■ Represent as Boolean function R(s).
■ Never enumerate states explicitly

Given Compute

Initial
R0

=

Q0



Iterative Computation

Ri

δ

Ri

∃

Ri +1

in

old

new

∃

■ Ri +1 – set of states that can be reached i +1 transitions
■ Either in Ri

■ or single transition away from some element of Ri

■  for some input

■ Continue iterating until Ri  = Ri +1



Restriction Operation

Implementation
■ Depth-first traversal.
■ Complexity linear in argument graph size

Concept
■ Effect of setting function argument xi  to constant k  (0 or 1).
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Variable Quantification

■ Eliminate dependency on some argument through
quantification

■ Same as step used in resolution-based prover
■ Combine with AND for universal quantification.

xi –1

xi +1

xn  

x1

F  ∃ ∃ xi F  

1 F  

0 F  

xi –1

xi +1

xn  

x1

xi –1

xi +1

xn  

x1



Multi-Variable Quantification
Operation

■ Compute: ∃ X F (X, Y )
■ X Vector of bound  variables x1, …, xn

■ Y Vector of free  variables y1, …, ym

■ Result:
■ Function of free variables Y  only
■ yields 1 if F (X, Y ) would yield 1 for some assignment to variables X

Methods
■ Sequentially

– ∃ x1[∃ x 2 [… ∃ xn [F (X, Y )]…]]

■ Simultaneously, by recursive algorithm over BDD for  F

Complexity
■ Each quantification can at most square graph size
■ Typically not so bad



Motivation for Studying
Symbolic Model Checking (MC)

MC is an important part of formal verification
■ digital circuits and other finite state systems
■ BDDs are an enabling technology for MC

Not well studied
■ Packages are tuned using combinational circuits (CC)

Qualitative differences between CC and MC computations
■ CC: build outputs, constant time equivalence checking
■ MC: build model, many fixed-points to verify the specs
■ CC: BDD algorithms are polynomial

■ If-Then-Else algorithm

■ MC: key BDD algorithms are exponential
■ Multi-variable quantification



BDD Data Structures

BDD
■ Multi-rooted DAG

■ Each root denotes different Boolean function

■ Provide automatic memory management
■ Garbage collection based on reference counting

Unique Table
■ Provides mapping [x, v0, v1] → v

■ Required to make sure graph is canonical

Computed Cache
■ Provides memoization of argument / results
■ Reduce manipulation algorithms from exponential to

polynomial
■ Periodically flush to avoid excessive growth

x

v0 v1

v



Interactions Between Data Structures

Dead Nodes
■ Reference Count → 0

■ No references by other nodes or by top-level pointers
■ Decrement reference counts of children

■ Could cause death of entire subgraph

■ Still have invisible reference from unique table

Garbage Collection
■ Eliminate all dead nodes
■ Remove entries from unique table

Rebirth
■ Possible to resurrect node considered dead
■ From hit in unique table
■ Must increment child reference counts

■ Could cause rebirth of subgraph



Organization of this Study:
Participants

Armin Biere: ABCD
Carnegie Mellon / Universität Karlsruhe

Olivier Coudert: TiGeR
Synopsys / Monterey Design Systems

Geert Janssen: EHV
Eindhoven University of Technology

Rajeev K. Ranjan: CAL
Synopsys

Fabio Somenzi: CUDD
University of Colorado

Bwolen Yang: PBF
Carnegie Mellon



Organization of this Study: Setup

Metrics: 17 statistics
Benchmark: 16 SMV execution traces

■  traces of BDD-calls from verification of
■  cache coherence, Tomasulo, phone, reactor, TCAS…

■  size
■  6 million - 10 billion sub-operations
■  1 - 600 MB of memory

■ Gives 6 * 16 = 96 different cases

Evaluation platform: trace driver
■  “drives” BDD packages based on execution trace



Organization of this Study:
Evaluation Process

Phase 1: no dynamic variable reordering

Phase 2: with dynamic variable reordering

hypothesize
design

experiments validate

collect
stats

identify
issues

suggest
improvements validate

Iterative Process



BDD Evaluation Methodology
Metrics: Time

elapsed time
(performance)

CPU time page fault 
rate

BDD Alg timeGC time

# of GCs

memory
usage

# of ops
(work)

computed 
cache size

Challenge
■ Effect of given optimization

uncertain
■ E.g., decreasing #GCs

would save CPU time, but
increase page faults



memory
usage

# of GCs

computed 
cache size

max # of
BDD nodes

BDD Evaluation Methodology
Metrics: Space

Time/Space Trade-Offs
■ Cache size
■ GC frequency



Phase 1 Results: Initial / Final

Conclusion: collaborative efforts have led to significant 
performance improvements
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Phase 1: Before/After

6 packages * 16 traces = 96 cases
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Phase 1: Hypotheses / Experiments

Computed Cache
■ effects of computed cache size
■ number of repeated sub-problems across time

Garbage Collection
■ reachable / unreachable

Complement Edge Representation
■ work
■ space

Memory Locality for Breadth-First Algorithms



Phase 1:
Hypotheses / Experiments (Cont’d)

For Comparison
■ ISCAS85 combinational circuits (> 5 sec, < 1GB)

■  c2670, c3540
■  13-bit, 14-bit multipliers based on c6288

Metric depends only on the trace and BDD algorithms
■  machine-independent
■  implementation-independent



Computed Cache Size Dependency

Hypothesis
■ The computed cache is more important for MC than for CC.

Experiment
■ Vary the cache size and measure its effects on work.

■  size as a percentage of BDD nodes
■  normalize the result to minimum amount of work
■    necessary; i.e., no GC and complete cache.



Effects of Computed Cache Size

# of ops: normalized to the minimum number of operations

cache size: % of BDD nodes 

MC Traces
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Conclusion: large cache is important for MC



Computed Cache:
Repeated Sub-problems Across Time
Source of Speedup

■  increase computed cache size

Possible Cause
■  many repeated sub-problems are far apart in time

Validation
■ study the number of repeated sub-problems across user issued

operations (top-level operations).



Hypothesis: Top-Level Sharing

Hypothesis
■ MC computations have a large number of repeated
■ sub-problems across the top-level operations.

Experiment
■  measure the minimum number of operations with GC disabled

and complete cache.
■  compare this with the same setup, but cache is flushed

between top-level operations.



flush: cache flushed between top-level operations
min: cache never flushed

Conclusion: large cache is more important for MC
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Garbage Collection: Rebirth Rate

Source of Speedup
■  reduce GC frequency

Possible Cause
■  many dead nodes become reachable again (rebirth)

■  GC is delayed until the number of dead nodes reaches a threshold
■  dead nodes are reborn when they are part of the result of new sub-

problems



Hypothesis: Rebirth Rate

Hypothesis
■ MC computations have very high rebirth rate.

Experiment
■ measure the number of deaths and the number of rebirths
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Conclusions
■ delay garbage collection
■ triggering GC should not be based only on # of dead nodes

■ Just because a lot of nodes are dead doesn’t mean they’re useless

■ delay updating reference counts
■ High cost to kill/resurrect subgraphs



BF BDD Construction

On MC traces, breadth-first based BDD

construction has no demonstrated advantage over

traditional depth-first based techniques.

Two packages (CAL and PBF) are BF based.



BF BDD Construction Overview

Level-by-Level Access
■  operations on same level (variable) are processed together
■  one queue per level

Locality
■ group nodes of the same level together in memory

Good memory locality due to BF ⇒
■ # of ops processed per queue visit must be high



Average BF Locality

Conclusion: MC traces generally have less BF locality
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Average BF Locality / Work

Conclusion: For comparable BF locality,
MC computations do much more work.
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Phase 1:
Some Issues / Open Questions

Memory Management
■  space-time tradeoff

■  computed cache size / GC frequency

■  resource awareness
■  available physical memory, memory limit, page fault rate

Top-Level Sharing
■  possibly the main cause for

■  strong cache dependency
■  high rebirth rate

■  better understanding may lead to
■  better memory management
■  higher level algorithms to exploit the pattern



Phase 2:
Dynamic Variable Reordering

BDD Packages Used
■  CAL, CUDD, EHV, TiGeR
■  improvements from phase 1 incorporated



Variable Ordering Sensitivity
■ BDD unique for given variable order
■ Ordering can have large effect on size
■ Finding good ordering essential
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Dynamic Variable Ordering

■ Rudell, ICCAD ‘93

Concept
■ Variable ordering changes as computation progresses

■ Typical application involves long series of BDD operations

■ Proceeds in background, invisible to user

Implementation
■ When approach memory limit, attempt to reduce

■ Garbage collect unneeded nodes
■ Attempt to find better order for variables

■ Simple, greedy reordering heuristics
■ Ongoing improvements



Reordering By Sifting

■ Choose candidate variable
■ Try all positions in variable ordering

■ Repeatedly swap with adjacent variable

■ Move to best position found
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Swapping Adjacent Variables

Localized Effect
■ Add / delete / alter only nodes labeled by swapping variables
■ Do not change any incoming pointers
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Dynamic Ordering Characteristics

Added to Many BDD Packages
■ Compatible with existing interfaces
■ User need not be aware that it is happening

Significant Improvement in Memory Requirement
■ Limiting factor in many applications
■ Reduces need to have user worry about ordering
■ Main cost is in CPU time

■ Acceptable trade-off
■ May run 10X slower

Compatible with Other Extensions
■ Now part of “core technology”



Why is Variable Reordering
Hard to Study

Time-space tradeoff
■ how much time to spent to reduce graph sizes

Chaotic behavior
■ e.g., small changes to triggering / termination criteria
■ can have significant performance impact

Resource intensive
■ reordering is expensive
■ space of possible orderings is combinatorial

Different variable order ⇒ different computation
■ e.g., many “don’t-care space” optimization algorithms



BDD Evaluation Methodology
Metrics: Time

elapsed time
(performance)

CPU time page fault 
rate

BDD Alg timeGC time
reordering

time

# of GCs
# of node swaps

(reorder cost)

memory
usage

# of ops
(work)

# of 
reorderings

computed 
cache size



BDD Evaluation Methodology
Metrics: Space

memory
usage

# of GCs
 reordering

time

computed 
cache size

max # of
BDD nodes



Only CUDD is used

Phase 2:
Experiments

Quality of Variable Order Generated
Variable Grouping Heuristic

■  keep strongly related variables adjacent

Reorder Transition Relation
■  BDDs for the transition relation are used repeatedly

Effects of Initial Variable Order
■  with and without variable reordering



Effects of Initial Variable Order:
Perturbation Algorithm

Perturbation Parameters (p, d)
■  p: probability that a variable will be perturbed
■  d: perturbation distance

Properties
■  in average, p fraction of variables is perturbed
■  max distance moved is 2d
■  (p = 1, d = ∞) ⇒ completely random variable order

For each perturbation level (p, d)
■ generate a number (sample size) of variable orders



Effects of Initial Variable Order:
Parameters

Parameter Values
■  p: (0.1, 0.2, …, 1.0)
■  d: (10, 20, …, 100, ∞)

■  sample size: 10

For each trace
■  1100 orderings
■  2200 runs (w/ and w/o dynamic reordering)



Effects of Initial Variable Order:
Smallest Test Case

Base Case (best ordering)
■  time:         13 sec
■  memory: 127 MB

Resource Limits on Generated Orders
■  time:       128x base case
■  memory: 500 MB



At 128x/500MB limit, “no reorder” finished 33%,
          “reorder” finished 90%.

Conclusion: dynamic reordering is effective
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> 4x or > 500Mb

Conclusions: For very low perturbation, reordering does not work well.

           Overall, very few cases get finished.
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> 32x or > 500Mb

Conclusion: variable reordering worked rather well
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Phase 2:
Some Issues / Open Questions

Computed Cache Flushing
■  cost

Effects of Initial Variable Order
■  determine sample size

Need New Better Experimental Design



Summary

Collaboration + Evaluation Methodology
■  significant performance improvements

■  up to 2 orders of magnitude

■  characterization of MC computation
■ computed cache size
■ garbage collection frequency
■ effects of complement edge
■ BF locality
■ effects of reordering the transition relation
■ effects of initial variable orderings

■  other general results (not mentioned in this talk)
■  issues and open questions for future research



For data and BDD traces used in this study,
http://www.cs.cmu.edu/~bwolen/fmcad98/

Conclusions

Rigorous quantitative analysis can lead to:
■ dramatic performance improvements
■ better understanding of computational characteristics

Adopt the evaluation methodology by:
■ building more benchmark traces

■ for IP issues, BDD-call traces are hard to understand

■ using / improving the proposed metrics for future evaluation


