Future Technology Dec. 1, 1998

Topics

- Moore's Law Computing
- Mainstream technologies
 - Semiconductor basics
 - -CMOS Scaling
- Nonstandard technologies
 - Flash memory
 - Programmable logic
- Distant future
 - Atomic scale storage

Impact of Technology

It's the Technology, Stupid!

• Computer science has ridden the wave

Things Aren't Over Yet

- Technology will continue to progress along current growth curves
- For at least 10 more years
- Difficult technical challenges in doing so

Even Technologists Can't Beat Laws of Physics

- Quantum effects create fundamental limits as approach atomic scale
- Opportunities for new devices

-2- CS 740 F'98

Risk of Predicting the Future

Incremental Improvements Exceed Wildest Dreams

- Silicon CMOS
- Magnetic disks
- DRAM

Hopes for Future Technology Never Materialize

- Magnetic bubble memory
- CCD memory
- Gallium Arsenide

Observations

- In this business, "incrementing" is by multiplicative factor
- Economies of scale favor existing technology
- Shifts occur due to new market forces
 - Drive for low power due to desire for portability
 - Emphasis on networking due to WWW

-3-

Impact of Moore's Law

Moore's Law

- Performance factors of systems built with integrated circuit technology follow exponential curve
- E.g., computer speed / memory capacities double every 1.5 years

Implications

- Computers 10 years from now will run 102 X faster
- Problems that appear intractable today will be straightforward
- Must not limit future planning with today's technology

Example Application Domains

- Speech recognition
 - Will be routinely done with handheld devices
- Breaking secret codes
 - Need to use large enough keys

- 4 *-*

Solving Exponentially Hard Problems

Conventional Wisdom

Exponential problems are intractable

Operation

- Assume problem of size n requires 2^n steps
- Each step takes k years on a Y2K computer

Y2K Computer Performance

- Start computation Jan. 1, 2000
- Keep running same machine until problem solved
- Would take $k \, 2^n$ years

-5- CS 740 F'98

Solving with a Y2K Computer

Y2K Computer

Moore's Law Computer

Operation

- Start computing on Jan. 1, 2000
- Keep upgrading machine being used
- In year y, would have performance 1.587 relative to Y2K machine

Performance

 After y years of operation, would have performed as much computation as Y2K machine would do in time:

$$\int_{0}^{y} 1.587^{x} dx$$

$$= 2.16(1.587^{y} - 1)$$

• Examples

$$y = 1$$
 1.27
 $y = 2$ 3.29
 $y = 5$ 20.
 $y = 10$ 218
 $y = 100$ 2.53 X 10²⁰

Solving Hard Problems

Solution Time

- Problem of size n
- Running y years on Moore's Law computer
- For large values of yn: = $2.16 \ln(1 + 0.462 k 2^n)$

$$y = 1.5 n + 2.16 \ln k - 1.67$$
$$= O(n)$$

Complexity

• Linear in problem size

Solving with a Moore's Law Computer

Moore's Law Computer

Effect of Step Complexity

Observe

 Step complexity k adds only additive factor of 2.16 ln k to running time

Example

• For n = 100

ky1 second1111 minute1201 hour1291 day1361 week1401 year148

Explanation

• Final years of computation will be on exponentially faster machines

Implications of Moore's Law

P=NP (Effectively)

Problems of exponential complexity can be solved in linear time

Caveat

Cannot hold forever

Fundamental Limit

- Argument due to Ed Fredkin
- Claim that ulimate limit to growth in memory capacity is cubic
- Cannot build storage device with less than one electron
- Assume consume all available material to build memories
 - Would soon exhaust planetary resources
 - -Cannot travel into outer space faster than speed of light
- Total amount of material available at time t is (t³)
- This limit will be hit in ~400 years

- 11 - CS 740 F'98

Dimensions

-12-

MOS Transistor

Typical Dimensions

• 1997: $l = 0.20 \ \mu m$ $t_{ox} = 4.5 \ nm$

• 2007: $l = 0.08 \ \mu m$ $t_{ox} = ??$

Transistor Operation

Off

On

← I_{ds} − 50 − 100 μA

Scaling to 0.1µm

• Semiconductor Industry Association, 1992 Technology Workshop

Year	1992	1995	1998	2001	2004	2007
Feature size	0.5	0.35	0.25	0.18	0.12	0.10
DRAM cap	16M	64M	256M	1G	4G	16G
Gates/chip	300K	800K	2M	5M	10M	20M
Chip cm ²	2.5	4.0	6.0	8.0	10.0	12.5
Intercn. level	ls 3	4–5	5	5–6	6	6–7
Supply Volts	5.0	3.3	2.2	2.2	1.5	1.5
I/Os	500	750	1500	2000	3500	5000
off chip MHz	60	100	175	250	350	500
on chip MHz	120	200	350	500	700	1000

-15-

Where are We on Roadmap?

- Semiconductor Industry Association, 1992 Technology Workshop
- Compare to 1998 state of the art (Pentium II Xeon)

Year	1998	Xeon	Status
Feature size	0.25	0.25	On track
DRAM cap	256M		Available
Gates/chip	2M	7.5M xtrs	What did they mean?
Chip cm ²	6.0	1.18	Nobody > 4.75
Intercn. levels	5	4	(Others) On target
Supply Volts	2.2	2.0	Early
I/Os	1500	528	Nobody > 1088
off chip MHz	175	~100	Others faster
on chip MHz	350	450	Early

-16-

Challenges Reaching 0.1 µm

Gate oxide tunneling

electrons jump through thin gate oxides

Nonuniform dopant concentrations

- < 100 dopant atoms in inversion layer
- Statistical variations cause varying device characteristics

Scaling of threshold voltages

- Difference between gate and source voltages for transistor to turn on
- Too low: leakage current when transistor "off"
 - Higher standby power
- Too high: poor performance

Lithography

- Reaching optical limits
- Alternatives (X-ray, E-beam) costly for large scale manufacturing

-17-

Sub 0.1 µm Devices

Double Gate MOS Transistor

- IBM J. R&D, Jan/Mar '95
- Thin channel region allows more effective shutoff

How low can you go?

- Below 10nm (0.01 µm), quantum effects become prevalent
- This would be 1000 X improvement over today's areal densities

Scaling Theory

Constant Field Scaling

- Rideout, et al, IBM '77
- Uniformly scale all linear dimensions by factor of
- Also reduce supply voltage by factor of
 - Preserves field strength

$$E = V/d$$

- Otherwise get breakdown effects
- In reality, not scaling as quickly as linear dimensions

Effect of Scaling

Transi	stor	Cou	nt	
_				

• Assuming constant area 2

Actual chips are growing slowly

Switching Time

• Channel Length / Field 1/

Capacitances

Area / Distance

Switching Power / Device

Frequency ~ 1/switching time

• C V² * Frequency 1/ ²

Power / Chip

Device Power * # devices

• In reality, growing to allow increased performance

Scaling the Wires

Scaled Wires

All dimensions shrink by

Resistance R

• L/(H*W)

Capacitance to Substrate C

• L*W/T 1/

Wire Delay

• R*C

- Relative to switching
 - Becomes dominating factor

Scaling the Wires (cont)

Cross-Chip Wires

Only height H and width W shrink by

Resistance R

• L/(H*W) 2

Capacitance to Substrate C

L*W/T

Wire Delay

• R*C 2

Relative to switching

Appears to be impractical

Adding Repeaters

Repeaters

- Act as amplifiers
- Implemented using inverters

Assume Insert k Repeaters

- Each has delay + $(R/k * C/k) = + RC/k^2$
- Total delay = $k^*(+ RC/k^2) = k^* + RC/k$
- Minimum delay = 2*SQRT(R*C*)
- Scales as SQRT()

Real-Life Scaling

Don't drop supply voltage as fast

Higher speed at cost of higher power

Don't shrink wires uniformly

Increase Vertical/Horizontal aspect ratio

• Problem: Parasitic Capacitances to adjacent wires dominate

Major problem for CAD tools

Processing Tricks

Low Resistivity Interconnect

- Use copper rather than aluminum
- Provides 1.8X improvement

Low Dielectric Constant Insulators

- Especially for space between adjacent wires
- Reduces parasitic capacitances
- Provides 2X improvement

- 25 - CS 740 F'98

Wire Scaling

Nonstandard Technology

Flash Memory

- Provides nonvolatile storage
 - Maintains state when power turned off
- Features slow write, but reasonable read

RAM Programmable Logic

- Hardware that can be dynamically reconfigured
- Both functionality and wiring connections programmable
- Blurs distinction between hardware and software

Microdisk Storage Arrays

Future technology for large scale storage systems

- 27 - CS 740 F'98

Flash Memory

Characteristics

- Retains state even when power shut off
- Read times comparable to DRAM
- Slow write times
- Limited endurance: ~ 100,000 read/write cycles (or less!)

Applications

- Semi-permanent storage
 - -Built in software, parameter RAM, font tables
 - Endurance and slow writes not an issue
- Alternative to magnetic storage
 - No moving parts—lower power and more rugged
 - More expensive per bit: Approx. 2X DRAM

- 28 - CS 740 F'98

Flash Memory Cell

- Samsung, IEDM '95
- Cell Size 1.6 μm²
 - -1.4 X denser than DRAM cell for comparable design rules
- Simpler process

Control Gate

Cross Section

- Two Cells
- Common control gate
- Common source

Flash Cell Writing

Based on Fowler-Nordheim Tunneling

Electron has nonzero probability of crossing thin insulator

Erase Operation

- Drive electrons into floating gate
- For entire group of cells

Program Operation

- Drive electrons out of floating gate
- For selected cell

State Retention

Electrons will remain in floating gate indefinitely

How Tunneling Works

Erasing Flash Cells

Erasing

- Electrons drawn into floating gate
- For entire group of cells
- ~ 400 μs

Erasing Top Row

Fig. 1 Schematic diagram of the DuSNOR flash memory cell array.

Programming Flash Cell

- Electrons pushed out of floating gate
- For selected cell
- ~ 15 µs

Programming Upper Right Cell 0v (Column Deselect) 5v (Column Select) ++v (Activate Drains) SSL -11v (Row Select) Wt.1 **0v (Row Deselect)** WL2 -Source Line Orain. Line **0v (Row Deselect)** WL i **0v (Float Source)** GSL

Fig. 1 Schematic diagram of the DuSNOR flash memory cell array.

Common Source

Flash Cell Reading

Programmed Cell

- Behaves like normal transistor
 - But, lower quality
- Threshold voltage = 2 v

Erased Cell

- Trapped electrons shield control gate
- Treshold voltage = 7 v

Reliability

State Retention

- Electrons stay trapped in floating gate
- Good for ~ 10 years

Endurance

- Over many erase / program cycles, electrons become trapped in tunneling oxide
 - -OK for 100,000 cycles
- Causes threshold voltage for programmed cell to rise

- 35 - CS 740 F'98

Intel StrataFlash

Microprocessor Report 10/6/97, Intel WWW site

Process Technology

- 0.4µm process
- 50,000 electrons in single cell

Multi-Valued Storage

- 4 different programming levels / cell
- 5% added to die area for enhanced read/write circuitry
- 150 ns read access time
- 32-byte write buffer with 6 µs / byte write time
- Erase in 128 KB blocks
 - Up to 10,000 erase cycles / block
 - -Takes ~1s

Availability

- 64Mb chip
- \$30 list for quantities > 10,000

Field Programmable Gate Arrays

Chip Populated with Programmable Elements

- Programmable Logic Blocks
- Programmable Routing Resources

Configuration Determines Functionality

- On-chip SRAM cells hold programming bits
- Configured as shift register for downloading

Effect

- Speed comparable to conventional hardware (multi-megahertz)
- Flexibility & ability to change comparable to software

Programmable Logic Cells

Lookup Table (LUT) based

- Store the truth table of n-input logic function
- Requires 2ⁿ bits of configuration
- Xilinx 4000 parts: 4-input LUTs

2-input LUT

~ 60 bits of configuration information

- 39 -

CS 740 F'98

Xilinx Interconnect

Programmable Interconnect

Pass Transistors as switches

-40 - CS 740 F'98

Routing for Single Cell

- Different length wires
- Varying performance
- Special carry logic

Applications of FPGAs

Currently

- Hardware prototyping & emulation
- Systems where anticipate need to change functionality
 - E.g., protocols yet to be standardized

Potentially

- Programmable logic mixed with hard-wired in CPU core
- Reconfigure for specialized functions, nonstandard data types, etc.
 - Instruction set extensions in style of MMX, but more flexible
- Research projects at CMU
 - Seth Goldstein, Herman Schmit
 - -Course offered next semester

- 42 - CS 740 F'98

Micro Disks

Motivation

- Current disk drives give high capacity but poor access times
- Mechanical components limit reliability and consume power

Microelectronic Mechanical Systems (MEMS)

- Fabricate mechanical devices using VLSI processing technology
- Currently used for miniaturized sensors and actuators

Silicon Disk

- Proposed technology for high density storage
- Goal is to get 100 Gb in 1cm²
 - -3 nm X 3 nm bit storage
 - −1 % of surface used for bit storage
 - » Rest for electronics and actuators

- 43 - CS 740 F'98

Storage Array

- Probe tip moves over 32 X 32 array of bits
- Arm controlled by electrostatic actuator
- Uses tunneling to read/write bits