
Model Checking

Randal E. Bryant
CS 740

Nov. 17, 1998

Topics
• Basics

– Model Construction
– Writing specifications in temporal logic
– Debugging

• Model for bus-based cache system
• How SMV works

CS 740 F’98– 2 –

System Model

Reactive System Verification
Temporal Logic Model Checking

• Construct state machine representation of reactive system
– Nondeterminism expresses range of possible behaviors
– “Product” of component state machines

• Express desired behavior as formula in temporal logic
• Determine whether or not property holds

Traffic Light
Controller

Design

“It is never possible
to have a green
light for both N-S
and E-W.”

Model
Checker

True

False
+ Counterexample

Environmental
Model

CS 740 F’98– 3 –

Verification with SMV
Language

• Describe system as hierarchy of modules
– Operate concurrently
– Possibly nondeterministic

• Describe operating environment as nondeterministic process
• Express desired properties by temporal logic formulas

Verifier
• Constructs BDD representation of system transition relation
• Determines whether specification formula satisfied

– Generates counterexample if not

Applications
• Able to verify systems with large (> 1020) state spaces
• Widespread interest by industry and researchers

CS 740 F’98– 4 –

System Example

Traffic Light Controller
• Mead & Conway, Introduction to VLSI Systems

• Allow highway light(s) to remain green indefinitely
• When car sensed on farm road

– Wait for delay
– Cycle to green
– Hold green until no cars or until maximum delay reached

Highway

Farm
Road Sensor

CS 740 F’98– 5 –

Model Structure

Model Closed System
• Environment model
• Model of system being verified

Modular Structure
• Each module a (nondeterministic) state machine
• Interacts with other modules via signals

Controller
(cntl)

Timer
(time)

farm-cars

start-timer long short

farm-light highway-light

Car Source
(main)

Environment
Model

(green, yellow, red)

CS 740 F’98– 6 –

Traffic Controller Main Module

State Variables
• Declared for each module

– Boolean (0/1), enumerated, or (finite) integer range
• Can assign initial and next state

– init(x) := …
– next(x) := …

• Can reference current and next state
– … := x
– … := next(x)

-- WARNING: This version has bug(s)

MODULE main
VAR
 farm-cars : boolean;
 cntl : controller(farm-cars, time.long, time.short);
 time : timer(cntl.start-timer);
ASSIGN
 init(farm-cars) := 0;
 -- Nondeterministic driving!
 next(farm-cars) := { 0, 1 };

Nondeterministic assignment
– Next state can be any

element in set

CS 740 F’98– 7 –

Timer Module

• Does not explicitly model
time

• Progresses through
sequence: ticking, short-
done, long-done

• Start acts as reset signal

MODULE timer(start)
VAR
 state : { ticking, short-done, long-done };
ASSIGN
 init(state) := long-done;
 next(state) :=
 case
 start : ticking;
 state = ticking : { ticking, short-done };
 state = short-done : { short-done, long-done };
 1 : state;
 esac;

ticking
short-
done

long-
done

start

start

CS 740 F’98– 8 –

Timer Module (cont).

Defined Signals
• Expressions in terms of state variables
• Do not introduce additional state variables
• More efficient than adding state

MODULE timer(start)
VAR
 state : { ticking, short-done, long-done };
ASSIGN

 • • •

DEFINE
 short := state = short-done;
 long := state = long-done;

CS 740 F’98– 9 –

Controller Module

MODULE controller(cars, long, short)
VAR
 -- state
 state :
 { highway-yellow, highway-green, farm-yellow, farm-green };
 start-timer : boolean;
 -- outputs
 farm-light : {green, yellow, red};
 highway-light : {green, yellow, red};

CS 740 F’98– 10 –

Controller Module State
init(state) := highway-green;
 next(state) :=
 case
 state = highway-green & cars & long : highway-yellow;
 state = highway-yellow & short : farm-green;
 state = farm-green & (!cars | long) : farm-yellow;
 state = farm-yellow & short : highway-green;
 1 : state;
 esac;

car &
long timer

FGHG

FY

HY

delay ≥ long delay ≤ long

delay = short

delay = short

CS 740 F’98– 11 –

SMV Case Statement

• Sequence of condition / result pairs
• First one to match is used

 next(var) :=
 case
 cond1 : expr1;
 cond2 : expr2;
 1 : expr-default;
 esac;

CS 740 F’98– 12 –

Other Controller Signals

• Probably should implement as define’s
– Directly assigning current state

 start-timer :=
 state = highway-green & cars & long |
 state = highway-yellow & short |
 state = farm-green & (!cars | long) |
 state = farm-yellow & short;
 farm-light :=
 case
 state = farm-yellow : yellow;
 state = farm-green : green;
 1 : red;
 esac;
 highway-light :=
 case
 state = highway-yellow : yellow;
 state = highway-green : green;
 1 : red;
 esac;

CS 740 F’98– 13 –

Writing Specification
Safety Property

• “Bad things don’t happen”
• Either the farm road or the highway always has a red light

Liveness Property
• “Good things happen eventually”
• If a car appears on the farm road, it will eventually get a green light

• The highway light turns green infinitely often

 AG (cntl.farm-light = red | cntl.highway-light = red)

 AG (farm-cars -> AF cntl.farm-light = green)

 AG (AF cntl.highway-light = green)

CS 740 F’98– 14 –

Computation Tree Logic
Concept

• Consider unrolling of state graph into infinite tree
• Express formulas for state at some node of tree

– Usual Boolean connectives
» Properties of current state

– Properties of paths emanating from state
» Expressed using temporal operators

HG

HY

FG

FY

HG

HG

HY

HG

• • •

• • •

• • •

• • •

CS 740 F’98– 15 –

Temporal Operators
Always-Globally

• AG p
• p holds now and forever more
• Regardless of nondeterministic choices
• Express safety properties as AG (safe)

p

p

p

p

p

p

p

p

• • •

• • •

• • •

• • •

CS 740 F’98– 16 –

Temporal Operators (cont).
Always-Eventually

• AF p
• Along every path, p holds somewhere
• Something is guaranteed to happen

p

p

p

• • •

• • •

• • •

p

p

CS 740 F’98– 17 –

Derived Temporal Operators
Possibly Globally

• EG p
• There is some path for which p continually holds
• EG p == !AF !p

p

p

p

p

• • •

• • •

• • •

• • •

CS 740 F’98– 18 –

Derived Operators (cont).
Possibly Eventually

• EF p
• p holds at some point, as long as correct nondeterministic choices

are made
• EF p == ! AG !p

p

• • •

• • •

• • •

• • •

CS 740 F’98– 19 –

Nested Temporal Operations
• Express properties of paths emanating from states along paths
• Can become hopelessly obscure
• If formula is too complex, it’s almost certainly not what you want,

anyhow

Useful Case
• AG AF p
• At any time, p must hold in the future
• p holds infinitely often

• Converse: EF EG !p
– There is some point in the future, such that from that point onward it is

possible for p never to hold

p p p• • • • • • • • •

Along All Paths

CS 740 F’98– 20 –

Traffic Light Specification
Safety Property

• “Bad things don’t happen”
• Either the farm road or the highway always has a red light

Liveness Property
• “Good things happen eventually”
• If a car appears on the farm road, it will eventually get a green light

• The highway light turns green infinitely often

 AG (cntl.farm-light = red | cntl.highway-light = red)

 AG (farm-cars -> AF cntl.farm-light = green)

 AG (AF cntl.highway-light = green)

CS 740 F’98– 21 –

SMV Run #1
-- specification AG (cntl.farm-light = red | cntl.highway...
-- is false
-- as demonstrated by the following execution sequence
state 1.1:
farm-cars = 0
cntl.state = highway-green
cntl.start-timer = 0
cntl.farm-light = red
cntl.highway-light = green
time.long = 1
time.short = 0
time.state = long-done

state 1.2:
farm-cars = 1
cntl.start-timer = 1

-- loop starts here --
state 1.3:
farm-cars = 0
cntl.state = highway-yellow
cntl.start-timer = 0
cntl.highway-light = yellow
time.long = 0
time.state = ticking

Counterexample Facility
• Shows trace indicating case for

which specification is false
– Path to state violating safety

property
– Path to cyclic condition violating

liveness condition

First Bug Found
• Timer hung up in “ticking” state
• Nothing forces time to progress

CS 740 F’98– 22 –

Fixing Timer
VAR
 state : { ticking, short-done, long-done };
 progress : boolean;
ASSIGN
 init(state) := long-done;
 next(state) :=
 case
 start : ticking;
 !progress : state;
 state = ticking : short-done;
 state = short-done : long-done;
 1 : state;
 esac;
 next(progress) := {0, 1};
DEFINE
 short := state = short-done;
 long := state = long-done;
FAIRNESS
 progress

Modified State
• Variable progress forces

transition
• Set nondeterministically

Fairness Property
• Condition that must hold

infinitely often
• Model checker considers

only fair paths
• Timer must keep making

progress
• Can’t reach some point

where it stops altogether

CS 740 F’98– 23 –

SMV Run #2
• Yields 11 state sequence followed by 3 state loop

Counterexample Condition
• Farm car #1 approaches, triggering light cycle
• Farm car #1 disappears before farm light turns green

– Controller designed before right-on-red legal?
• Farm car #2 appears & disappears at yellow light
• Light cycle completes
• Highway light stays green indefinitely

Violated Condition

• Didn’t hold for Farm car #2
• Went through yellow light

 AG (farm-cars -> AF cntl.farm-light = green)

CS 740 F’98– 24 –

Specification Fix #1

• Consider yellow light to be good enough

Counterexample
• Irrelevant stuff:

– Farm car #1 approaches, triggering light cycle
– Farm car #1 disappears before farm light turns green
– Light cycle completes

• Farm car #2 appears, but disappears before long timer interval
• Highway light stays green indefinitely

Violated Condition
• Farm car #2 never had green or yellow light

 AG (farm-cars -> AF cntl.farm-light in
 { green, yellow })

CS 740 F’98– 25 –

Ways to Fix
Car Fix

• Farm car must stay there as long as light is red
• Verifies, but makes strong assumption about environment

Specification Fix #2

• If a farm car is persistent, it will eventually be allowed to go

 init(farm-cars) := 0;
 next(farm-cars) :=
 case
 -- Wait until light is green
 farm-cars & cntl.farm-light = red : 1;
 1 : {0, 1};
 esac;

 AG AF (farm-cars -> cntl.farm-light in
 { green, yellow })

CS 740 F’98– 26 –

Snoopy Bus-Based Consistency

Caches
• Write-back

– Minimize bus traffic
• Monitor bus transactions when not

master

Cached blocks
• Clean block can have multiple, read-

only copies
• To write, must obtain exclusive copy

– Marked as dirty

Getting copy
• Make bus request
• Memory replies if block clean
• Owning cache replies if dirty

P P P• • •

Memory

C

Memory Bus

C C

MasterSnoop Snoop

CS 740 F’98– 27 –

Simplifications Made in SMV Model
Single Cache Line

• No loss of generality, since different cache lines don’t interact
– Except if some interaction within associative set

Two Tag Values
• Oversimplification

Three Processors
• Oversimplification

Model Control Only
• No data or data transfers

Simplistic Processor Model
• Issues arbitrary sequence of reads, writes, and no-ops
• Provides environment model
• Captures full generality of operating environment

CS 740 F’98– 28 –

Module
Structure

MODULE main
VAR
 bus : bus(c0.bus-req, c0.bus-line-req,
 c1.bus-req, c1.bus-line-req,
 c2.bus-req, c2.bus-line-req);
 c0 : cache(p0.op, p0.line, bus.master0, bus.op, bus.line);
 p0 : processor(c0.stall);
 c1 : cache(p1.op, p1.line, bus.master1, bus.op, bus.line);
 p1 : processor(c1.stall);
 c2 : cache(p2.op, p2.line, bus.master2, bus.op, bus.line);
 p2 : processor(c2.stall);
 m : memory(bus.op, bus.line);

p0

p1

p2

c0

c1

c2

bus
m

op, line

op, line

op, line

stall

stall

stall

bus-req,
bus-line-req

master0,
op, line

bus-req,
bus-line-req

bus-req,
bus-line-req

master1,
op, line

master2,
op, line

op, line

Main
Memory

CS 740 F’98– 29 –

Processor Module

• Generates arbitrary
sequence of operations
to arbitrary addresses

• Holds operation &
address persistently as
long as stalled

MODULE processor(stall)
VAR
 op : {no-op, read, write };
 line: {lnA, lnB} ;
ASSIGN
 init(op) := no-op;
 next(op) :=
 case
 stall : op;
 !stall : {no-op, read, write};
 esac;
 init(line) := {lnA, lnB} ;
 next(line) :=
 case
 stall : line;
 1 : {lnA, lnB} ;
 esac;

CS 740 F’98– 30 –

Implementation Details
Operating Principle

• Every block has “owner”
• Responsible for supplying value

when needed

Owned by Main Memory
• Correct value in main memory
• Other copies read-only

– May be more than 1 copy

Owned by Cache
• Held by some cache on behalf of

its processor
– Allowed to modify

• Version in memory not valid
• Must write back to evict
• Must supply if requested by other

cache

Bus Operations
• Read

– Get read-only copy
• XRead

– Get writeable copy

– Like Read + Invalidate
» Except that atomic

» Required to guarantee
eventual success

• Invalidate
– Invalidate all other copies
– Make local copy writeable

• Write
– Write back dirty block
– To make room for different

block

CS 740 F’98– 31 –

Main Memory Module

Operation
• Track status of every

memory block
– Not very realistic

• Respond to bus requests
• A & B blocks handled

symmetrically

Gaining ownership
• when cache writes back
• when one cache reads

blocked owned by other
cache

Losing ownership
• Some cache obtains

exclusive copy

MODULE memory(bus-op, bus-line)
VAR
 ownA : boolean;
 ownB : boolean;
ASSIGN
 init(ownA) := 1;
 next(ownA) :=
 case
 ! bus-line = lnA : ownA;
 -- Gaining ownership
 bus-op = write : 1;
 bus-op = read : 1;
 -- Giving up ownership
 bus-op in {invalidate, xread} : 0;
 1 : ownA;
 esac;
 init(ownB) := 1;
 next(ownB) :=
 • • •

CS 740 F’98– 32 –

Bus Model
Bus Timing

• Arbitrate
– Cache controllers specify requested operation & address

• Grant
– Bus designates master & broadcasts requested operation & address

• Data
– Data passed on bus
– Not modeled in our protocol

Arbitrate Grant Data

CS 740 F’98– 33 –

Bus State

Token
• Used to guarantee fairness
• Indicates priority among requesters

Master
• Indicates which cache wins arbitration

Op
• “arbitrate” during arbitration phase
• Bus operation during grant phase

Line
• Address for bus operation

MODULE bus(req0, line0, req1, line1, req2, line2)
VAR
 token : {0, 1, 2}; -- Pass around token
 master : {0, 1, 2, no-one};
 op : {arbitrate, read, xread, write, invalidate, no-op};
 line : {lnA, lnB} ;

CS 740 F’98– 34 –

Bus Fairness

Quasi-Round-Robin
• Token determines priority
• Passed around

nondeterministically
– on grant phase

• Everyone guaranteed to get it

 init(token) := {0,1,2};
 next(token) :=
 case
 op = arbitrate : token;
 1 : {0, 1, 2};
 esac;

init(master) := no-one;
 next(master) :=
 case
 !(op = arbitrate) : no-one;
 -- Arbitrate for new master
 token = 0 :
 case
 !(req0 = no-op) : 0;
 !(req1 = no-op) : 1;
 !(req2 = no-op) : 2;
 1 : no-one;
 esac;
 token = 1 :
 case
 !(req1 = no-op) : 1;
 !(req2 = no-op) : 2;
 !(req0 = no-op) : 0;
 1 : no-one;
 esac;
 1 : -- token = 2
 case
 !(req2 = no-op) : 2;
 !(req0 = no-op) : 0;
 !(req1 = no-op) : 1;
 1 : no-one;
 esac;
 esac;

FAIRNESS
 token = 0
FAIRNESS
 token = 1
FAIRNESS
 token = 2

CS 740 F’98– 35 –

Bus Operation

Control
• Alternate between

arbitrate & grant
phases

• During grant, pass on
requested operation

Address
• During grant, pass

requested line

init(op) := no-op;
 next(op) :=
 case
 !(op = arbitrate) : arbitrate;
 next(master) = 0 : req0;
 next(master) = 1 : req1;
 next(master) = 2 : req2;
 1 : no-op;
 esac;
 init(line) := {lnA, lnB} ;
 next(line) :=
 case
 !(op = arbitrate) : line;
 next(master) = 0 : line0;
 next(master) = 1 : line1;
 next(master) = 2 : line2;
 1 : {lnA, lnB} ;
 esac;
DEFINE
 master0 := master = 0;
 master1 := master = 1;
 master2 := master = 2;

CS 740 F’98– 36 –

Cache State

• Maintained by each cache for each of its blocks
• Invalid

–Entry not valid
• Clean

–Valid, read-only copy
–Matches copy in main memory

• Dirty
–Exclusive,writeable copy

–Must write back to evict
• Error

– Condition that should not arise
– Added to allow stronger forms of verification

MODULE cache(proc-op, proc-line, master, bus-op, bus-line)
VAR
 state : { invalid , clean, dirty, error };
 tag : {lnA, lnB} ;

CS 740 F’98– 37 –

Performing Processor Operations
• Processor requests cache to perform load or store

– On word in cache block i
• Cache line currently holds block t

– May or may not have i = t
• Cache can either:

– Perform operation using local copy
– Issue bus request to get block

» Stall processor until block ready

P/B
Request

Operation i:t

Bus
Operation

Bus
Block

Tag
Update

Processor
Operation

Processor

Cache

clean t

Status Tag DataBlock = i

Read / Write

Done / Stall

Bus Op

Bus Block

Action Key

CS 740 F’98– 38 –

Bus Master Actions

Invalid Clean

Dirty

P Read –

Read i

i Read

P Read =

None –

– Read

P Read ≠

Read i

i Read

P Write =

Inval. i

– Write

P Read =

None –

– Read

P Write =

None –

– Write

P Write ≠

Write t

– Stall

P Read ≠

Write t

– Stall

P/B
Request

Operation i:t

Bus
Operation

Bus
Block

Tag
Update

Processor
Operation

i Requested Block
t Current Block

P Write –

XRead i

i Write

P Write ≠

XRead i

i Write

CS 740 F’98– 39 –

Bus Master State Update
init(state) := invalid;
 next(state) :=
 case master :
 case
 state in { invalid, clean } :
 case
 proc-op = read : clean;
 proc-op = write : dirty;
 1 : state;
 esac;
 state = dirty :
 case
 proc-line = tag : dirty;
 proc-op in { read, write } : invalid;
 1 : state;
 esac;
 1 : state;
 esac;

CS 740 F’98– 40 –

Bus Monitoring

• Cache monitors bus traffic when not master
– Looks for operations on blocks matching cache entries

• Possible actions
– Invalidate entry
– Allow sharing of exclusively held block

» Supply data on bus

Processor

Cache

clean t

Status Tag Data Bus Op

Bus Block = i

Bus Data

Action Key
P/B

Bus
Operation i:t

– –

–
Cache

Operation

CS 740 F’98– 41 –

Bus Snoop Actions

Invalid Clean

Dirty

B Inv =

– –

– –

B Read =

– –

– Data

i Requested Block
t Current Block
Data: Cache supplies block

B – ≠

– –

– –

B Read =

– –

– –

B – ≠

– –

– –

P/B
Bus

Operation i:t

– –

–
Cache

Operation

B XRd =

– –

– –

B XRd =

– –

– Data

CS 740 F’98– 42 –

Bus Snoop State Update
1 : -- ! master
 case
 state = clean :
 case
 !(bus-line = tag) : clean;
 bus-op in { invalidate, xread } : invalid;
 bus-op = write : error;
 1 : state;
 esac;
 state = dirty :
 case
 !(bus-line = tag) : dirty;
 bus-op = read : clean;
 bus-op = xread : invalid;
 bus-op in { write, invalidate } : error;
 1 : state;
 esac;
 1 : state ;
 esac;
 esac;

CS 740 F’98– 43 –

Maintaining Tag

• Only update when loading new block
• Due to processor read or write operation

init(tag) := {lnA, lnB} ;
 next(tag) :=
 case
 !master : tag;
 -- When bus master, operate on behalf of processor
 state in { invalid, clean } &
 proc-op in {read, write} : proc-line;
 1 : tag;
 esac;

CS 740 F’98– 44 –

bus-req :=
 case bus-op = arbitrate :
 case
 state = invalid :
 case
 proc-op = read : read;
 proc-op = write : xread;
 1 : no-op;
 esac;
 state = clean :
 case
 proc-op = read & ! proc-line = tag : read;
 proc-op = write & proc-line = tag : invalidate;
 proc-op = write : xread;
 1 : no-op;
 esac;
 state = dirty :
 case
 proc-op in {read, write} &
 ! proc-line = tag : write;

 1 : no-op;
 esac;
 1 : no-op;
 esac;
 1 : no-op;
 esac;

Defining Bus Request

CS 740 F’98– 45 –

Other Defines
Processor Stall Signal

Address for Bus Request

Ownership Conditions

stall :=
 proc-op in {read, write} &
 ! proc-line = tag |
 proc-op = read & ! state in {clean, dirty} |
 proc-op = write & ! state = dirty;

bus-line-req :=
 case
 state in {invalid, clean} : proc-line;
 state = dirty : tag;
 1 : {lnA, lnB} ;
 esac;

ownA := state = dirty & tag = lnA;
ownB := state = dirty & tag = lnB;

CS 740 F’98– 46 –

Cache Specification
Safety

Liveness

-- Block A has unique owner
 AG (c0.ownA + c1.ownA + c2.ownA + m.ownA = 1)
 -- Block B has unique owner
 & AG (c0.ownB + c1.ownB + c2.ownB + m.ownB = 1)
 -- No error states
 & AG (!(c0.state = error) & !(c1.state = error)
 & !(c2.state = error))

& AG (AF !c0.stall & AF !c1.stall & AF !c2.stall)

CS 740 F’98– 47 –

Boolean Manipulation with OBDDs

• Ordered Binary Decision Diagrams
• Data structure for representing Boolean functions
• Widely used for other VLSI CAD tasks

Example:

(x1 + x2) ·x3

◆ Nodes represent variable tests
◆ Branches represent variable values

Dashed for value 0

Solid for value 1

x2

0 1

x3

x1

CS 740 F’98– 48 –

Representing Circuit Functions

Functions
• All outputs of 4-bit adder
• as functions of data and carry

inputs

Shared Representation
• Graph with multiple roots
• 31 nodes for 4-bit adder
• 571 nodes for 64-bit adder
* Linear growth

y3 y3

x3

Cout

y3

y2 y2

x2

y2 y2

x2

y3

x3

S3

y2

y1 y1

x1

y1 y1

x1

y2

x2

S2

y1

x0 x0

y1

x1

S1

y0

10

y0

x0

S0

CS 740 F’98– 49 –

Symbolic FSM Representation

Nondeterministic FSM Symbolic Representation

• Represent set of transitions as function δ(x, o, n)

– Yields 1 if input x can cause transition from state o to state n.
• Represent as Boolean function

– Over variables encoding states and inputs

o2

n1

o1

1

n2

0

n1

x

x input

o1,o2 encoded
old state

n1, n2 encoded
new state

A B

C
01,11

00 10

01

1

0

0,1 0

CS 740 F’98– 50 –

Example: Reachability Analysis

Rstate 0/1δ
input

old state

new state

0/1

Task
• Compute set of states reachable from initial state Q0
• Represent as Boolean function R(s).
• Never enumerate states explicitly

Given Compute

Initial
R0

=

Q0

CS 740 F’98– 51 –

Iterative Computation

Ri

δ

Ri

∃

Ri +1

in

old

new

∃

• Ri +1 – set of states that can be reached i +1 transitions
– Either in Ri

– or single transition away from some element of Ri

– for some input
• Continue iterating until Ri = Ri +1

CS 740 F’98– 52 –

The Symbolic Advantage
Handle Large State Spaces

• Single 32-bit register has over 4 billion states
• As combine modules, states increase multiplicatively

Why BDDs?
• Often remain compact, even though state spaces very large
• Algorithmic way to compose functions, project relations, test for

convergence
– Never explicitly enumerate states

