Cache Coherence

Todd C. Mowry
CS 740
November 10, 1998

Topics
« The Cache Coherence Problem
 Snoopy Protocols
» Directory Protocols

The Cache Coherence Problem

e Caches are critical to modern high-speed processors

* Multiple copies of a block can easily get inconsistent
e e processor writes, I/O writes, ...

Cache Coherence Solutions

Software Based:

« often used in clusters of workstations or PCs (e.g., “Treadmarks”)
« extend virtual memory system to perform more work on page faults
—send messages to remote machines if necessary

Hardware Based:

 two most common variations:

—“snoopy” schemes
» rely on broadcast to observe all coherence traffic
» well suited for buses and small-scale systems
» example: SGI Challenge

—directory schemes
» uses centralized information to avoid broadcast
» scales well to large numbers of processors
» example: SGI Origin 2000

Shared Caches

* Processors share a single cache, essentially punting
the problem.

e Useful for very small machines. E.g., DPC in the
Encore, Alliant FX/8.

* Problems are limited cache bandwidth and cache interference
* Benefits are fine-grain sharing and prefetch effects

00 QO

I
I
[Crossbar
I
I

.____:I____J 2-4 way interleaved cache
Memory |

Memory

Snoopy Cache Coherence Schemes

A distributed cache coherence scheme based on the notion of
a snoop that watches all activity on a global bus, or is

informed about such activity by some global broadcast
mechanism.

 Most commonly used method in commercial multiprocessors.

« Examples: Encore Multimax, Sequent Symmetry, SGI
Challenge, SUN Galaxy, ...

-5- CS 740 F'98

Write-Through Schemes

All processor writes result in:
« update of local cache and a global bus write that:
—updates main memory
—invalidates/updates all other caches with that item
Examples:
» early Sequent and Encore machines.
Advantage:
e simple to implement

Disadvantages:

* Since ~15% of references are writes, this scheme consumes
tremendous bus bandwidth. Thus only a few processors can be
supported.

Write-Back/Ownership Schemes

« When a single cache has ownership of a block, processor writes do
not result in bus writes, thus conserving bandwidth.

 Most bus-based multiprocessors use such schemes these days.

 Many variants of ownership-based protocols exist:
—Goodman's write-once scheme
— Berkeley ownership scheme
— Firefly update protocol

-7 - CS 740 F'98

Goodman's Write-Once Scheme

One of the first write-back schemes proposed

Classification: Write-back, invalidation-based

States:

I: invalid

V: valid ==> data is clean and possibly in "V" state in multiple PEs

R: reserved ==> owned by this cache, but main memory is up-to-date
D: dirty ==> owned by this cache, and main memory is stale

e Cache sees transactions from two sides: (i) processor and (ii) bus.

e Terminology:
—prm, prh, pwm, pwh: processor read miss/hit, write miss/hit
—gbr, gbri, gbw, gbi: generate bus read, read-with-inval, bus write, inval
—br, bri, bw, bi: bus read, read-with-inval, write, inval observed

bw
)/ prh
O :
prm/gbr
pwh/gbw
br/gbw

©

prh, pwh

lllinois Scheme (J. Patel)

States:
* |, VE (valid-exclusive), VS (valid-shared), D (dirty)

Two features:

« The cache knows if it has an valid-exclusive (VE) copy. In VE state,
no invalidation traffic on write-hits.

» If some cache has a copy, cache-cache transfer is used.

Advantages:
» closely approximates traffic on uniprocessor for sequential pgms
* in large cluster-based machines, cuts down latency (e.g., DASH)

Disadvantages:
 complexity of mechanism that determines exclusiveness
e memory needs to wait before sharing status is determined

DEC Firefly Scheme

Classification:
* Write-back, update

States:

 VE (valid exclusive): only copy and clean

« VS (valid shared): shared-clean copy. Write-hits result in updates to
other caches and entry remains in this state

o D (dirty): dirty exclusive (only copy)

Used special "shared line" on bus to detect sharing
status of cache line

Advantage:
e Supports producer-consumer model well

Disadvantage:
 What about sequential processes migrating between CPUs?

Invalidation vs. Update Strategies

Retention strategy: When to drop block from cache
» 1. Exclusive writer (inval-based): Write causes others to drop.
o 2. Pack rat (update-based): Block dropped only on conflict.

Exclusive writer is bad when:
* single producer and many consumers of data (e.g., bound in TSP).

Pack rat is bad when:

 multiple writes by one PE before data is read by another PE (e.qg.,
supernode-to-column update in panel cholesky).

* junk data accumulates in large caches (e.g., process migration).

Overall, invalidation schemes are more popular as the
default.

Hierarchical Cache Coherence

2 2. F

C1
1 *

Cc2
| C2

(@) ®)

e Hierarchies arise in different ways:

(a) A processor with an on-chip and external cache
(single cache hierarchy)

(b) Large scale multiprocessor using a hierarchy of buses (multi-cache
hierarchy)

Single Cache Hierarchies

©

Ci
1

C2

S B

 Inclusion property: Everything in L1 cache is also
present in L2 cache.
L2 must also be owner of block if L1 has the block dirty

* Snoop of L2 takes responsibility for recalling or invalidating data
due to remote requests

* |t often helps if the block sizein L1 is smaller or the same size as
that in L2 cache

Hierarchical Snoopy Cache Coherence

 Simplest way to build large-scale cache-coherent MPs
IS to use a hierarchy of buses and use snoopy
coherence at each level.

 Two possible ways to build such a machine:
(a) All main memory at the global (B2) bus
(b) Main memory distributed among the clusters

2 22 88 &~

B1 | | 81

Memory Memory

Main Memory (Mp)

(a) (b)

Hierarchies with Global Memory

2

-

B1

L2

 First-level caches:
* Highest performance SRAM caches.

2

| B1

L2

Main Memory (Mp)

B2

Bl follows standard snoopy protocol (e.g., the Goodman protocol).

e Second-level caches:
 Much larger than L1 caches (set assoc). Must maintain inclusion.
L2 cache acts as filter for B1-bus and L1-caches.

L2 cache can be DRAM based, since fewer references get to it.

Hierarchies w/ Global Mem (Cont)

Advantages:

 Misses to main memory just require single traversal to the root of
the hierarchy.

 Placement of shared data is not an issue.

Disadvantages.

 Misses to local data structures (e.g., stack) also have to traverse the
hierarchy, resulting in higher traffic and latency.

« Memory at the global bus must be highly interleaved. Otherwise
bandwidth to it will not scale.

Cluster Based Hierarchies

2

S e S e E—

Memory

Key idea: Main memory is distributed among clusters.
» reduces global bus traffic (local data & suitably placed shared data)
» reduces latency (less contention and local accesses are faster)
« example machine: Encore Gigamax

2

L2

—

B2

=

L2

=

Memory

L2 cache can be replaced by a tag-only router-
coherence switch.

Cache Coherence in Gigamax

Router-Coherence switch must know about:

 Local Mp words in remote caches and their state (clean/dirty)
Remote Mp words in local caches and their state (clean/dirty)
A write to a local-bus is passed to global-bus if:
—reference belongs to remote Mp
—belongs to local Mp but is present in some remote cache
A read to a local-bus is passed to the global-bus if:
—reference belongs to remote Mp (and not in cluster cache)
—belongs to local Mp and is dirty in some remote cache
A write on global-bus is passed to the local-bus if:
—reference belongs to local Mp
—data belongs to remote Mp, but the block is dirty in local cache

Many race conditions are possible
* e.g., awrite-back going out as arequest is coming in

Hierarchies: Summary

Advantages:

* Conceptually simple to build (apply snooping recursively)
 Can get merging and combining of requests in hardware

Disadvantages:

* Physical hierarchies do not provide enough bisection bandwidth (the
root becomes a bottleneck, e.g., 2-d, 3-d grid problems)

« Latencies often larger than in direct networks

— 20 - CS 740 F'98

Directory Based Cache Coherence

Motivation for Directory Schemes

Snoopy schemes do not scale because they rely on
broadcast

Directory-based schemes allow scaling.

* they avoid broadcasts by keeping track of all PEs caching a memory
block, and then using point-to-point messages to maintain
coherence

» they allow the flexibility to use any scalable point-to-point network

Basic Scheme (Censier & Feautrier)

& vee ©

Cache Cache « Assume "K" processors.
| | » With each cache-block in memory:
Interconnection Network k presence-bits, and 1 dirty-bit
| | « With each cache-block in cache:
Memory <= pirectory lvalid bit, and 1 dirty (owner) bit

presence bits dirty bit
 Read from main memory by PE-i:

— If dirty-bit is OFF then { read from main memory; turn p[i] ON; }

—if dirty-bit is ON then { recall line from dirty PE (cache state to shared);
update memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to
PE-i; }

 Write to main memory:

— If dirty-bit OFF then { supply data to PE-i; send invalidations to all PEs
caching that block; turn dirty-bit ON; turn P[i] ON; ... }

Key Issues

Scaling of memory and directory bandwidth

e Can not have main memory or directory memory centralized
 Need a distributed cache coherence protocol

As shown, directory memory requirements do not scale
well

 Reason is that the number of presence bits needed grows as the
number of PEs

* In reality, there are many ways to get around this problem
—limited pointer schemes of many flavors

The Stanford DASH Architecture

DASH ==> Directory Architecture for SHared memory

® eee @ D e ©

Cache Cache/lo'rese'nCe bits Cache Cache
I I dirty bit I I
/N
CCHECEE L/ i
Memory Directory[e o o -| Directory Memory

Interconnection Network

Nodes connected by scalable interconnect
Partitioned shared memory

Processing nodes are themselves multiprocessors
Distributed directory-based cache coherence

Directory Protocol Examples

1. Read Request
to Home

R o
et
e

3. Read Reply
to Local

3. Sharing Writeback

to Home

2. Forward Read

Request to Dinty

* Read of remote-dirty data

latency and

lization

e Forwarding strategy
minimizes

Seria

) to Shared Data

Exclusive

Write (Read

RdE ¥ Request
to Home

1.

RAE X Reply
to Local

2

2. Invalidations

to Shared.

idate Ack's

Inval

3.

to Local

Key Issues

Scaling of memory and directory bandwidth

e Can not have main memory or directory memory centralized
 Need a distributed cache coherence protocol

As shown, directory memory requirements do not scale
well

 Reason is that the number of presence bits needed grows as the
number of PEs

« ==>How many bits or pointers are really needed?

Cache Invalidation Patterns

 Hypothesis: On a write to a shared location, with high
probability only a small number of caches need to be
iInvalidated.

 If the above were not true, directory schemes would
offer little advantage over snoopy schemes.

Invalidation Pattern Summary

Code and read-only objects (e.g, distance matrix in TSP)
* no problems as rarely written

Migratory objects (e.g., particles in MP3D)
» even as # of PEs scale, only 1-2 invalidations
Mostly-read objects (e.g., bound in TSP)
e invalidations are large but infrequent, so little impact on performance
Frequently read/written objects (e.g., task queue data
structures)
* invalidations usually remain small, though frequent

Synchronization objects

* low-contention locks result in small invalidations
* high-contention locks need special support (SW trees, queueing locks)

Directory Organizations

Memory-based schemes (DASH) vs. cache-based
schemes (SCI)

Cache-based schemes:
e singly-linked (Thapar) vs. doubly-linked schemes (SCI)

Memory-based schemes:
e Full-map (Dir-N) vs. partial-map schemes (Dir-i-B, Dir-i-CV-r, ...)
 Dense (DASH) vs. sparse directory schemes (DASH-2)

Cache-based Linked-list Schemes

Keep track of PEs caching a block by linking cache
entries together

» First proposed by Tom Knight for "Aurora" machine in 1987

Scalable Coherent Interface (SCI) is the most
developed protocol

» uses doubly-linked list for chaining cache entries together

Cache-Based Protocols: Summary

Advantages:

» Directory memory needed scales with number of PEs
« They have addressed all forward progress issues

Disadvantages:
* Requires directory memory to be built from SRAM (same as cache)

 To perform invalidations on write, need to serially traverse caches of
sharing PEs (long latency and complex)

 Cache replacements are complex as both forward and backward
pointers need to be updated

* In base protocol, read to clean data requires 4 messages (first to
memory and then to the head-cache) as compared to 2 messages in
other protocols. (Slower and more complex)

Memory-based Coherence Schemes

e The Full Bit Vector Scheme

e Limited Pointer Schemes

e Sparse Directories

—34 — CS 740 F'98

The Full Bit Vector Scheme

* One bit of directory memory per main-mem block per
PE

« Memory requirements are [P (P*M/B)], wherePis #
of PEs, M is main memory per PE, and B is cache-block
size.

e Invalidation traffic is best

« One way to reduce overhead is to increase B
e Can result in false-sharing and increased coherence traffic

 Overhead not too large for medium-scale
multiprocessors.

« Example: 256 PEs organized as sixty four 4-PE clusters
64 byte cache blocks ==> ~12% memory overhead

Limited Pointer Schemes

Since data is expected to be in only a few caches at any
one time, a limited # of pointers per directory entry
should suffice.

Overflow Strategy: What to do when # of sharers
exceeds # of pointers

Many different schemes based on differing overflow
strategies

Some Examples

DIR-I-B:
 Beyond i-pointers, set inval-broadcast bit ON
» Storage needed [i * log(P)*PM /B]
 Expected to do well since widely shared data is not written often

DIR-I-NB:
« When sharers exceed "i", invalidate one of existing sharers
» Significant degradation expected for widely shared mostly-read data

DIR-I-CV-r:

« When sharers exceed "i", use bits allocated to "i" pointers as a
coarse-resolution-vector (each bit points to multiple PES)

» Always results in less coherence traffic than Dir-i-B

Limitless directories:
 Handle overflow using software traps

Sparse Directories

Since total # of cache blocks in machine is much less
than total # of memory blocks, most directory entries
are idle most of the time

Example:
o 256 Kbyte cache, 16 Mbyte memory per PE ==> >98% idle

Sparse directories reduce memory requirements by:
e using single directory entry for multiple memory blocks
» dir-entry can be freed by invalidating cached copies of a block
 main problem is the potential for excessive dir-entry conflicts
» conflicts can be reduced by using associative sparse directories

FLASH Directory Structure

Use a dynamic pointer scheme (Simoni)

» dense array with single pointer per memory block, plus next ptr
e pointers for other sharers are allocated out of free pool
« with replacements, memory usage is proportional to cache in machine

e pointer management in FLASH is handled by a fully programmable
but specialized processor

Directory-Based Coherence: Summary

Directories offer the potential for scalable cache
coherence
* no broadcasts
e arbitrary network topology
» tolerable hardware overheads

—40 — CS 740 F'98

