
Cache Coherence

Todd C. Mowry
CS 740

November 10, 1998

Topics
• The Cache Coherence Problem
• Snoopy Protocols
• Directory Protocols

CS 740 F’98– 2 –

The Cache Coherence Problem

• Caches are critical to modern high-speed processors
• Multiple copies of a block can easily get inconsistent

• • processor writes, I/O writes, ...

P

Cache

P

Cache

Memory
A=5

A=5 A=5

2
1

3
A=7

CS 740 F’98– 3 –

Cache Coherence Solutions

Software Based:
• often used in clusters of workstations or PCs (e.g., “Treadmarks”)
• extend virtual memory system to perform more work on page faults

– send messages to remote machines if necessary

Hardware Based:
• two most common variations:

– “snoopy” schemes
» rely on broadcast to observe all coherence traffic
» well suited for buses and small-scale systems
» example: SGI Challenge

– directory schemes
» uses centralized information to avoid broadcast
» scales well to large numbers of processors
» example: SGI Origin 2000

CS 740 F’98– 4 –

Shared Caches

• Processors share a single cache, essentially punting
the problem.

• Useful for very small machines. E.g., DPC in the
Encore, Alliant FX/8.
• Problems are limited cache bandwidth and cache interference
• Benefits are fine-grain sharing and prefetch effects

P P

Shd. Cache

Memory

P

Memory

P P

Crossbar

2-4 way interleaved cache

CS 740 F’98– 5 –

Snoopy Cache Coherence Schemes

• A distributed cache coherence scheme based on the notion of
a snoop that watches all activity on a global bus, or is
informed about such activity by some global broadcast
mechanism.

• Most commonly used method in commercial multiprocessors.

• Examples: Encore Multimax, Sequent Symmetry, SGI
Challenge, SUN Galaxy, ...

CS 740 F’98– 6 –

Write-Through Schemes

All processor writes result in:
• update of local cache and a global bus write that:

– updates main memory
– invalidates/updates all other caches with that item

Examples:
• early Sequent and Encore machines.

Advantage:
• simple to implement

Disadvantages:
• Since ~15% of references are writes, this scheme consumes

tremendous bus bandwidth. Thus only a few processors can be
supported.

CS 740 F’98– 7 –

Write-Back/Ownership Schemes

• When a single cache has ownership of a block, processor writes do
not result in bus writes, thus conserving bandwidth.

• Most bus-based multiprocessors use such schemes these days.

• Many variants of ownership-based protocols exist:
– Goodman's write-once scheme
– Berkeley ownership scheme
– Firefly update protocol
– ...

CS 740 F’98– 8 –

Goodman's Write-Once Scheme

One of the first write-back schemes proposed

Classification: Write-back, invalidation-based

States:
• I: invalid
• V: valid ==> data is clean and possibly in "V" state in multiple PEs
• R: reserved ==> owned by this cache, but main memory is up-to-date
• D: dirty ==> owned by this cache, and main memory is stale

• Cache sees transactions from two sides: (i) processor and (ii) bus.

• Terminology:
– prm, prh, pwm, pwh: processor read miss/hit, write miss/hit
– gbr, gbri, gbw, gbi: generate bus read, read-with-inval, bus write, inval
– br, bri, bw, bi: bus read, read-with-inval, write, inval observed

I V

RD

prm/gbr

bw
prh

pwh/gbw

br/gbw

prh, pwh

CS 740 F’98– 10 –

Illinois Scheme (J. Patel)

States:
• I, VE (valid-exclusive), VS (valid-shared), D (dirty)

Two features:
• The cache knows if it has an valid-exclusive (VE) copy. In VE state,

no invalidation traffic on write-hits.
• If some cache has a copy, cache-cache transfer is used.

Advantages:
• closely approximates traffic on uniprocessor for sequential pgms
• in large cluster-based machines, cuts down latency (e.g., DASH)

Disadvantages:
• complexity of mechanism that determines exclusiveness
• memory needs to wait before sharing status is determined

CS 740 F’98– 11 –

DEC Firefly Scheme

Classification:
• Write-back, update

States:
• VE (valid exclusive): only copy and clean
• VS (valid shared): shared-clean copy. Write-hits result in updates to

other caches and entry remains in this state
• D (dirty): dirty exclusive (only copy)

Used special "shared line" on bus to detect sharing
status of cache line

Advantage:
• Supports producer-consumer model well

Disadvantage:
• What about sequential processes migrating between CPUs?

CS 740 F’98– 12 –

Invalidation vs. Update Strategies

Retention strategy: When to drop block from cache
• 1. Exclusive writer (inval-based): Write causes others to drop.
• 2. Pack rat (update-based): Block dropped only on conflict.

Exclusive writer is bad when:
• single producer and many consumers of data (e.g., bound in TSP).

Pack rat is bad when:
• multiple writes by one PE before data is read by another PE (e.g.,

supernode-to-column update in panel cholesky).
• junk data accumulates in large caches (e.g., process migration).

Overall, invalidation schemes are more popular as the
default.

CS 740 F’98– 13 –

Hierarchical Cache Coherence

• Hierarchies arise in different ways:
(a) A processor with an on-chip and external cache
 (single cache hierarchy)
(b) Large scale multiprocessor using a hierarchy of buses (multi-cache

hierarchy)

P

C1

C2

P

C1

P

C1

C2

(a) (b)

CS 740 F’98– 14 –

Single Cache Hierarchies

• Inclusion property: Everything in L1 cache is also
present in L2 cache.
• L2 must also be owner of block if L1 has the block dirty
• Snoop of L2 takes responsibility for recalling or invalidating data

due to remote requests
• It often helps if the block size in L1 is smaller or the same size as

that in L2 cache

P

C1

C2

CS 740 F’98– 15 –

Hierarchical Snoopy Cache Coherence

• Simplest way to build large-scale cache-coherent MPs
is to use a hierarchy of buses and use snoopy
coherence at each level.

• Two possible ways to build such a machine:
(a) All main memory at the global (B2) bus
(b) Main memory distributed among the clusters

(a) (b)

P P

L1 L1

L2

B1

P P

L1 L1

L2
B1

B2

Main Memory (Mp)

P P

L2

L1 L1

B1

Memory

P P

L1 L1

B1

L2
Memory

B2

CS 740 F’98– 16 –

Hierarchies with Global Memory

• First-level caches:
• Highest performance SRAM caches.
• B1 follows standard snoopy protocol (e.g., the Goodman protocol).

• Second-level caches:
• Much larger than L1 caches (set assoc). Must maintain inclusion.
• L2 cache acts as filter for B1-bus and L1-caches.
• L2 cache can be DRAM based, since fewer references get to it.

P P

L1 L1

L2

B1

P P

L1 L1

L2
B1

B2

Main Memory (Mp)

CS 740 F’98– 17 –

Hierarchies w/ Global Mem (Cont)

Advantages:
• Misses to main memory just require single traversal to the root of

the hierarchy.
• Placement of shared data is not an issue.

Disadvantages:
• Misses to local data structures (e.g., stack) also have to traverse the

hierarchy, resulting in higher traffic and latency.
• Memory at the global bus must be highly interleaved. Otherwise

bandwidth to it will not scale.

CS 740 F’98– 18 –

Cluster Based Hierarchies

Key idea: Main memory is distributed among clusters.
• reduces global bus traffic (local data & suitably placed shared data)
• reduces latency (less contention and local accesses are faster)
• example machine: Encore Gigamax

• L2 cache can be replaced by a tag-only router-
coherence switch.

P P

L2

L1 L1

B1

Memory

P P

L1 L1

B1

L2
Memory

B2

CS 740 F’98– 19 –

Cache Coherence in Gigamax

Router-Coherence switch must know about:
• Local Mp words in remote caches and their state (clean/dirty)
• Remote Mp words in local caches and their state (clean/dirty)
• A write to a local-bus is passed to global-bus if:

– reference belongs to remote Mp
– belongs to local Mp but is present in some remote cache

• A read to a local-bus is passed to the global-bus if:
– reference belongs to remote Mp (and not in cluster cache)
– belongs to local Mp and is dirty in some remote cache

• A write on global-bus is passed to the local-bus if:
– reference belongs to local Mp
– data belongs to remote Mp, but the block is dirty in local cache

• ...

Many race conditions are possible
• e.g., a write-back going out as a request is coming in

CS 740 F’98– 20 –

Hierarchies: Summary

Advantages:
• Conceptually simple to build (apply snooping recursively)
• Can get merging and combining of requests in hardware

Disadvantages:
• Physical hierarchies do not provide enough bisection bandwidth (the

root becomes a bottleneck, e.g., 2-d, 3-d grid problems)
• Latencies often larger than in direct networks

Directory Based Cache Coherence

CS 740 F’98– 22 –

Motivation for Directory Schemes

Snoopy schemes do not scale because they rely on
broadcast

Directory-based schemes allow scaling.
• they avoid broadcasts by keeping track of all PEs caching a memory

block, and then using point-to-point messages to maintain
coherence

• they allow the flexibility to use any scalable point-to-point network

CS 740 F’98– 23 –

Basic Scheme (Censier & Feautrier)

• Assume "k" processors.

• With each cache-block in memory:
k presence-bits, and 1 dirty-bit

• With each cache-block in cache:
1valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by PE-i:
– If dirty-bit is OFF then { read from main memory; turn p[i] ON; }
– if dirty-bit is ON then { recall line from dirty PE (cache state to shared);

update memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to
PE-i; }

• Write to main memory:
– If dirty-bit OFF then { supply data to PE-i; send invalidations to all PEs

caching that block; turn dirty-bit ON; turn P[i] ON; ... }
– ...

CS 740 F’98– 24 –

Key Issues

Scaling of memory and directory bandwidth
• Can not have main memory or directory memory centralized
• Need a distributed cache coherence protocol

As shown, directory memory requirements do not scale
well
• Reason is that the number of presence bits needed grows as the

number of PEs
• In reality, there are many ways to get around this problem

– limited pointer schemes of many flavors

CS 740 F’98– 25 –

The Stanford DASH Architecture

• Nodes connected by scalable interconnect
• Partitioned shared memory
• Processing nodes are themselves multiprocessors
• Distributed directory-based cache coherence

DASH ==> Directory Architecture for SHared memory

presence bits

dirty bit

• ••

P P

Cache Cache

Memory Directory

P

MemoryDirectory

P

CacheCache

Interconnection Network

CS 740 F’98– 26 –

Directory Protocol Examples

• Read of remote-dirty data

• Forwarding strategy
minimizes latency and
serialization

CS 740 F’98– 27 –

Write (Read-Exclusive) to Shared Data

CS 740 F’98– 28 –

Key Issues

Scaling of memory and directory bandwidth
• Can not have main memory or directory memory centralized
• Need a distributed cache coherence protocol

As shown, directory memory requirements do not scale
well
• Reason is that the number of presence bits needed grows as the

number of PEs
• ==> How many bits or pointers are really needed?

CS 740 F’98– 29 –

Cache Invalidation Patterns

• Hypothesis: On a write to a shared location, with high
probability only a small number of caches need to be
invalidated.

• If the above were not true, directory schemes would
offer little advantage over snoopy schemes.

CS 740 F’98– 30 –

Invalidation Pattern Summary

Code and read-only objects (e.g, distance matrix in TSP)
• no problems as rarely written

Migratory objects (e.g., particles in MP3D)
• even as # of PEs scale, only 1-2 invalidations

Mostly-read objects (e.g., bound in TSP)
• invalidations are large but infrequent, so little impact on performance

Frequently read/written objects (e.g., task queue data
structures)
• invalidations usually remain small, though frequent

Synchronization objects
• low-contention locks result in small invalidations
• high-contention locks need special support (SW trees, queueing locks)

CS 740 F’98– 31 –

Directory Organizations

Memory-based schemes (DASH) vs. cache-based
schemes (SCI)

Cache-based schemes:
• singly-linked (Thapar) vs. doubly-linked schemes (SCI)

Memory-based schemes:
• Full-map (Dir-N) vs. partial-map schemes (Dir-i-B, Dir-i-CV-r, ...)
• Dense (DASH) vs. sparse directory schemes (DASH-2)

CS 740 F’98– 32 –

Cache-based Linked-list Schemes

Keep track of PEs caching a block by linking cache
entries together
• First proposed by Tom Knight for "Aurora" machine in 1987

Scalable Coherent Interface (SCI) is the most
developed protocol
• uses doubly-linked list for chaining cache entries together

CS 740 F’98– 33 –

Cache-Based Protocols: Summary

Advantages:
• Directory memory needed scales with number of PEs
• They have addressed all forward progress issues

Disadvantages:
• Requires directory memory to be built from SRAM (same as cache)

• To perform invalidations on write, need to serially traverse caches of
sharing PEs (long latency and complex)

• Cache replacements are complex as both forward and backward
pointers need to be updated

• In base protocol, read to clean data requires 4 messages (first to
memory and then to the head-cache) as compared to 2 messages in
other protocols. (Slower and more complex)

CS 740 F’98– 34 –

Memory-based Coherence Schemes

• The Full Bit Vector Scheme

• Limited Pointer Schemes

• Sparse Directories

• ...

CS 740 F’98– 35 –

The Full Bit Vector Scheme

• One bit of directory memory per main-mem block per
PE

• Memory requirements are [P • (P • M / B)], where P is #
of PEs, M is main memory per PE, and B is cache-block
size.

• Invalidation traffic is best
• One way to reduce overhead is to increase B

• Can result in false-sharing and increased coherence traffic

• Overhead not too large for medium-scale
multiprocessors.
• Example: 256 PEs organized as sixty four 4-PE clusters
 64 byte cache blocks ==> ~12% memory overhead

CS 740 F’98– 36 –

Limited Pointer Schemes

Since data is expected to be in only a few caches at any
one time, a limited # of pointers per directory entry
should suffice.

Overflow Strategy: What to do when # of sharers
exceeds # of pointers

Many different schemes based on differing overflow
strategies

CS 740 F’98– 37 –

Some Examples

DIR-i-B:
• Beyond i-pointers, set inval-broadcast bit ON
• Storage needed [i • log(P) • PM / B]
• Expected to do well since widely shared data is not written often

DIR-i-NB:
• When sharers exceed "i", invalidate one of existing sharers
• Significant degradation expected for widely shared mostly-read data

DIR-i-CV-r:
• When sharers exceed "i", use bits allocated to "i" pointers as a

coarse-resolution-vector (each bit points to multiple PEs)
• Always results in less coherence traffic than Dir-i-B

Limitless directories:
• Handle overflow using software traps

CS 740 F’98– 38 –

Sparse Directories

Since total # of cache blocks in machine is much less
than total # of memory blocks, most directory entries
are idle most of the time

Example:
• 256 Kbyte cache, 16 Mbyte memory per PE ==> >98% idle

Sparse directories reduce memory requirements by:
• using single directory entry for multiple memory blocks
• dir-entry can be freed by invalidating cached copies of a block
• main problem is the potential for excessive dir-entry conflicts
• conflicts can be reduced by using associative sparse directories

CS 740 F’98– 39 –

FLASH Directory Structure

Use a dynamic pointer scheme (Simoni)
• dense array with single pointer per memory block, plus next ptr
• pointers for other sharers are allocated out of free pool
• with replacements, memory usage is proportional to cache in machine
• pointer management in FLASH is handled by a fully programmable

but specialized processor

CS 740 F’98– 40 –

Directory-Based Coherence: Summary

Directories offer the potential for scalable cache
coherence
• no broadcasts
• arbitrary network topology
• tolerable hardware overheads

