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The Cache Coherence Problem

• Caches are critical to modern high-speed processors
• Multiple copies of a block can easily get inconsistent

• • processor writes, I/O writes, ...
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Cache Coherence Solutions

Software Based:
• often used in clusters of workstations or PCs (e.g., “Treadmarks”)
• extend virtual memory system to perform more work on page faults

– send messages to remote machines if necessary

Hardware Based:
• two most common variations:

– “snoopy” schemes
» rely on broadcast to observe all coherence traffic
» well suited for buses and small-scale systems
» example: SGI Challenge

– directory schemes
» uses centralized information to avoid broadcast
» scales well to large numbers of processors
» example: SGI Origin 2000
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Shared Caches

• Processors share a single cache, essentially punting 
the problem.  

• Useful for very small machines. E.g., DPC in the 
Encore, Alliant FX/8.
• Problems are limited cache bandwidth and cache interference
• Benefits are fine-grain sharing and prefetch effects
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Snoopy Cache Coherence Schemes

• A distributed cache coherence scheme based on the notion of 
a snoop that watches all activity on a global bus, or is 
informed about such activity by some global broadcast 
mechanism.

• Most commonly used method in commercial multiprocessors.

• Examples: Encore Multimax, Sequent Symmetry, SGI 
Challenge, SUN Galaxy, ...
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Write-Through Schemes

All processor writes result in:
• update of local cache and a global bus write that:

– updates main memory
– invalidates/updates all other caches with that item

Examples: 
• early Sequent and Encore machines.

Advantage: 
• simple to implement

Disadvantages: 
• Since ~15% of references are writes, this scheme consumes 

tremendous bus bandwidth.  Thus only a few processors can be 
supported. 
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Write-Back/Ownership Schemes

• When a single cache has  ownership of a block, processor writes do 
not result in bus writes, thus conserving bandwidth.

• Most bus-based multiprocessors use such schemes these days.

• Many variants of ownership-based protocols exist:
– Goodman's write-once scheme
– Berkeley ownership scheme
– Firefly update protocol
– ...
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Goodman's Write-Once Scheme

One of the first write-back schemes proposed

Classification: Write-back, invalidation-based

States:
• I: invalid
• V: valid ==> data is clean and possibly in "V" state in multiple PEs
• R: reserved ==> owned by this cache, but main memory is up-to-date
• D: dirty ==> owned by this cache, and main memory is stale



• Cache sees transactions from two sides:  (i) processor and (ii) bus.

• Terminology:
– prm, prh, pwm, pwh:   processor read miss/hit, write miss/hit
– gbr, gbri, gbw, gbi:   generate bus read, read-with-inval, bus write, inval
– br, bri, bw, bi:   bus read, read-with-inval, write, inval observed
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Illinois Scheme (J. Patel)

States:   
• I,  VE (valid-exclusive), VS (valid-shared), D (dirty)

Two features:
• The cache knows if it has an valid-exclusive (VE) copy.  In VE state, 

no invalidation traffic on write-hits.
• If some cache has a copy, cache-cache transfer is used.

Advantages:
• closely approximates traffic on uniprocessor for sequential pgms
• in large cluster-based machines, cuts down latency (e.g., DASH)

Disadvantages:
• complexity of mechanism that determines exclusiveness
• memory needs to wait before sharing status is determined
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DEC Firefly Scheme

Classification: 
• Write-back, update

States: 
• VE (valid exclusive): only copy and clean
• VS (valid shared): shared-clean copy.  Write-hits result in updates to 

other caches and entry remains in this state
• D (dirty): dirty exclusive (only copy)

Used special "shared line" on bus to detect sharing 
status of cache line

Advantage:
• Supports producer-consumer model well

Disadvantage:
• What about sequential processes migrating between CPUs?
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Invalidation vs. Update Strategies

Retention strategy:  When to drop block from cache
• 1. Exclusive writer (inval-based): Write causes others to drop.
• 2. Pack rat (update-based): Block dropped only on conflict.

Exclusive writer is bad when:
• single producer and many consumers of data (e.g., bound in TSP).

Pack rat is bad when:
• multiple writes by one PE before data is read by another PE (e.g., 

supernode-to-column update in panel cholesky).
• junk data accumulates in large caches (e.g., process migration).

Overall, invalidation schemes are more popular as the 
default. 
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Hierarchical Cache Coherence

• Hierarchies arise in different ways:
(a) A processor with an on-chip and external cache 
      (single cache hierarchy)
(b) Large scale multiprocessor using a hierarchy of buses (multi-cache 

hierarchy)
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Single Cache Hierarchies

• Inclusion property: Everything in L1 cache is also 
present in L2 cache.
• L2 must also be owner of block if L1 has the block dirty
• Snoop of L2 takes responsibility for recalling or invalidating data 

due to remote requests
• It often helps if the block size in L1 is smaller or the same size as 

that in L2 cache
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Hierarchical Snoopy Cache Coherence

• Simplest way to build large-scale cache-coherent MPs 
is to use a hierarchy of buses and use snoopy 
coherence at each level.

• Two possible ways to build such a machine:
(a) All main memory at the global (B2) bus
(b) Main memory distributed among the clusters

(a) (b)
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Hierarchies with Global Memory

• First-level caches:
• Highest performance SRAM caches.  
• B1 follows standard snoopy protocol (e.g., the Goodman protocol).

• Second-level caches:
• Much larger than L1 caches (set assoc).  Must maintain inclusion.
• L2 cache acts as filter for B1-bus and L1-caches.
• L2 cache can be DRAM based, since fewer references get to it.
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Hierarchies w/ Global Mem (Cont)

Advantages:
• Misses to main memory just require single traversal to the root of 

the hierarchy.
• Placement of shared data is not an issue.

Disadvantages:
• Misses to local data structures (e.g., stack) also have to traverse the 

hierarchy, resulting in higher traffic and latency.
• Memory at the global bus must be highly interleaved.  Otherwise 

bandwidth to it will not scale.
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Cluster Based Hierarchies

Key idea: Main memory is distributed among clusters.
• reduces global bus traffic (local data & suitably placed shared data)
• reduces latency (less contention and local accesses are faster)
• example machine: Encore Gigamax

• L2 cache can be replaced by a tag-only router-
coherence switch.
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Cache Coherence in Gigamax

Router-Coherence switch must know about:
• Local Mp words in remote caches and their state (clean/dirty)
• Remote Mp words in local caches and their state (clean/dirty)
• A write to a local-bus is passed to global-bus if:

– reference belongs to remote Mp
– belongs to local Mp but is present in some remote cache

• A read to a local-bus is passed to the global-bus if:
– reference belongs to remote Mp (and not in cluster cache)
– belongs to local Mp and is dirty  in some remote cache

• A write on global-bus is passed to the local-bus if:
– reference belongs to local Mp
– data belongs to remote Mp, but the block is dirty in local cache

• ...

Many race conditions are possible
• e.g., a write-back going out as a request is coming in
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Hierarchies: Summary

Advantages:
• Conceptually simple to build (apply snooping recursively)
• Can get merging and combining of requests in hardware

Disadvantages:
• Physical hierarchies do not provide enough bisection bandwidth (the 

root becomes a bottleneck, e.g., 2-d, 3-d grid problems)
• Latencies often larger than in direct networks



Directory Based Cache Coherence
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Motivation for Directory Schemes

Snoopy schemes do not scale because they rely on 
broadcast

Directory-based schemes allow scaling.
• they avoid broadcasts by keeping track of all PEs caching a  memory 

block, and then using point-to-point messages to maintain 
coherence

• they allow the flexibility to use any scalable point-to-point network 
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Basic Scheme (Censier & Feautrier)

• Assume "k" processors.  

• With each cache-block in memory: 
k  presence-bits, and 1 dirty-bit

• With each cache-block in cache:   
1valid bit, and 1 dirty (owner) bit• ••
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• Read from main memory by PE-i:
– If dirty-bit is OFF then { read from main memory; turn p[i] ON; }
– if dirty-bit is ON   then { recall line from dirty PE (cache state to shared); 

update memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to 
PE-i; }

• Write to main memory:
– If dirty-bit OFF then { supply data to PE-i; send invalidations to all PEs 

caching that block; turn dirty-bit ON; turn P[i] ON; ... }
– ...
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Key Issues

Scaling of memory and directory bandwidth
• Can not have main memory or directory memory centralized
• Need a distributed cache coherence protocol

As shown, directory memory requirements do not scale 
well
• Reason is that the number of presence bits needed grows as the 

number of PEs
• In reality, there are many ways to get around this problem

– limited pointer schemes of many flavors
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The Stanford DASH Architecture

• Nodes connected by scalable interconnect
• Partitioned shared memory
• Processing nodes are themselves multiprocessors
• Distributed directory-based cache coherence

DASH ==>  Directory Architecture for  SHared memory
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Directory Protocol Examples

• Read of remote-dirty data

• Forwarding strategy 
minimizes latency and 
serialization
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Write (Read-Exclusive) to Shared Data
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Key Issues

Scaling of memory and directory bandwidth
• Can not have main memory or directory memory centralized
• Need a distributed cache coherence protocol

As shown, directory memory requirements do not scale 
well
• Reason is that the number of presence bits needed grows as the 

number of PEs
• ==> How many bits or pointers are really needed?
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Cache Invalidation Patterns

• Hypothesis:  On a write to a shared location, with high 
probability only a small number of caches need to be 
invalidated.

• If the above were not true, directory schemes would 
offer little advantage over snoopy schemes.
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Invalidation Pattern Summary

Code and read-only objects (e.g, distance matrix in TSP)
• no problems as rarely written

Migratory objects (e.g., particles in MP3D)
• even as # of PEs scale, only 1-2 invalidations

Mostly-read objects (e.g., bound in TSP) 
• invalidations are large but infrequent, so little impact on performance

Frequently read/written objects (e.g., task queue data 
structures)
• invalidations usually remain small, though frequent

Synchronization objects
• low-contention locks result in small invalidations
• high-contention locks need special support (SW trees, queueing locks)
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Directory Organizations

Memory-based schemes (DASH) vs. cache-based 
schemes (SCI)

Cache-based schemes:
• singly-linked (Thapar) vs. doubly-linked schemes (SCI)

Memory-based schemes:
• Full-map (Dir-N) vs. partial-map schemes (Dir-i-B, Dir-i-CV-r, ...)
• Dense (DASH) vs. sparse directory schemes (DASH-2)
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Cache-based Linked-list Schemes

Keep track of PEs caching a block by linking cache 
entries together
• First proposed by Tom Knight for "Aurora" machine in 1987

Scalable Coherent Interface (SCI) is the most 
developed protocol
• uses doubly-linked list for chaining cache entries together
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Cache-Based Protocols: Summary

Advantages:
• Directory memory needed scales with number of PEs
• They have addressed all forward progress issues

Disadvantages:
• Requires directory memory to be built from SRAM (same as cache)

• To perform invalidations on write, need to serially traverse caches of 
sharing PEs (long latency and complex)

• Cache replacements are complex as both forward and backward 
pointers need to be updated

• In base protocol, read to clean data requires 4 messages (first to 
memory and then to the head-cache) as compared to 2 messages in 
other protocols.  (Slower and more complex)
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Memory-based Coherence Schemes

• The Full Bit Vector Scheme

• Limited Pointer Schemes

• Sparse Directories

• ...
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The Full Bit Vector Scheme

• One bit of directory memory per main-mem block per 
PE

• Memory requirements are [P • (P • M / B) ], where P is # 
of PEs, M is main memory per PE, and B is cache-block 
size.

• Invalidation traffic is best
• One way to reduce overhead is to increase B

• Can result in false-sharing and increased coherence traffic

• Overhead not too large for medium-scale 
multiprocessors.
• Example: 256 PEs organized as sixty four 4-PE clusters
                   64 byte cache blocks ==> ~12% memory overhead



CS 740 F’98– 36 –

Limited Pointer Schemes

Since data is expected to be in only a few caches at any 
one time, a limited # of pointers per directory entry 
should suffice.

Overflow Strategy: What to do when # of sharers 
exceeds # of pointers

Many different schemes based on differing overflow 
strategies
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Some Examples

DIR-i-B:
• Beyond i-pointers, set inval-broadcast bit ON
• Storage needed [i • log(P) • PM / B ]
• Expected to do well since widely shared data is not written often

DIR-i-NB:
• When sharers exceed "i", invalidate one of existing sharers
• Significant degradation expected for widely shared mostly-read data

DIR-i-CV-r:
• When sharers exceed "i", use bits allocated to "i" pointers as a 

coarse-resolution-vector (each bit points to multiple PEs)
• Always results in less coherence traffic than Dir-i-B

Limitless directories: 
• Handle overflow using software traps
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Sparse Directories

Since total # of cache blocks in machine is much less 
than total # of memory blocks, most directory entries 
are idle most of the time

Example:    
• 256 Kbyte cache, 16 Mbyte memory per PE ==>  >98% idle

Sparse directories reduce memory requirements by:
• using single directory entry for multiple memory blocks
• dir-entry can be freed by invalidating cached copies of a block
• main problem is the potential for excessive dir-entry conflicts
• conflicts can be reduced by using associative sparse directories
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FLASH Directory Structure

Use a dynamic pointer scheme (Simoni)
• dense array with single pointer per memory block, plus next ptr
• pointers for other sharers are allocated out of free pool
• with replacements, memory usage is proportional to cache in machine
• pointer management in FLASH is handled by a fully programmable 

but specialized processor
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Directory-Based Coherence: Summary

Directories offer the potential for scalable cache 
coherence
• no broadcasts       
• arbitrary network topology 
• tolerable hardware overheads


