
Parallel Programming

Todd C. Mowry
CS 740

November 5, 1998
Topics

• Motivating Examples

• Parallel Programming for High Performance

• Impact of the Programming Model

• Case Studies

– Ocean simulation

– Barnes-Hut N-body simulation

CS 740 F’98– 2 –

Motivating Problems

Simulating Ocean Currents
• Regular structure, scientific computing

Simulating the Evolution of Galaxies
• Irregular structure, scientific computing

Rendering Scenes by Ray Tracing
• Irregular structure, computer graphics

• Not discussed here (read in book)

CS 740 F’98– 3 –

Simulating Ocean Currents

• Model as two-dimensional grids
• Discretize in space and time

– finer spatial and temporal resolution => greater accuracy
• Many different computations per time step

– set up and solve equations
• Concurrency across and within grid computations

(a) Cross sections (b) Spatial discretization of a cross section

CS 740 F’98– 4 –

Simulating Galaxy Evolution

• Simulate the interactions of many stars evolving over time

• Computing forces is expensive

• O(n2) brute force approach

• Hierarchical Methods take advantage of force law: G m1m2

r2

•Many time-steps, plenty of concurrency across stars within one

Star on which for ces
are being computed

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Large group far
enough away to
approximate

CS 740 F’98– 5 –

Rendering Scenes by Ray Tracing

• Shoot rays into scene through pixels in image plane

• Follow their paths

– they bounce around as they strike objects

– they generate new rays: ray tree per input ray

• Result is color and opacity for that pixel

• Parallelism across rays

All case studies have abundant concurrency

CS 740 F’98– 6 –

Parallel Programming Task

Break up computation into tasks
• assign tasks to processors

Break up data into chunks
• assign chunks to memories

Introduce synchronization for:
• mutual exclusion

• event ordering

CS 740 F’98– 7 –

Steps in Creating a Parallel Program

4 steps: Decomposition, Assignment, Orchestration,
Mapping
• Done by programmer or system software (compiler, runtime, ...)
• Issues are the same, so assume programmer does it all explicitly

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

CS 740 F’98– 8 –

Partitioning for Performance

Balancing the workload and reducing wait time at
synch points

Reducing inherent communication

Reducing extra work

Even these algorithmic issues trade off:
• Minimize comm. => run on 1 processor => extreme load imbalance

• Maximize load balance => random assignment of tiny tasks => no
control over communication

• Good partition may imply extra work to compute or manage it

Goal is to compromise
• Fortunately, often not difficult in practice

CS 740 F’98– 9 –

Load Balance and Synch Wait Time

Limit on speedup: Speedupproblem(p) <

• Work includes data access and other costs

• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1. Identify enough concurrency

2. Decide how to manage it

3. Determine the granularity at which to exploit it

4. Reduce serialization and cost of synchronization

Sequential Work

Max Work on any Processor

CS 740 F’98– 10 –

Deciding How to Manage Concurrency

Static versus Dynamic techniques

Static:
• Algorithmic assignment based on input; won’t change

• Low runtime overhead

• Computation must be predictable

• Preferable when applicable (except in
multiprogrammed/heterogeneous environment)

Dynamic:
• Adapt at runtime to balance load

• Can increase communication and reduce locality

• Can increase task management overheads

CS 740 F’98– 11 –

Dynamic Assignment

Profile-based (semi-static):
• Profile work distribution at runtime, and repartition dynamically

• Applicable in many computations, e.g. Barnes-Hut, some graphics

Dynamic Tasking:
• Deal with unpredictability in program or environment (e.g. Raytrace)

– computation, communication, and memory system interactions

– multiprogramming and heterogeneity

– used by runtime systems and OS too

• Pool of tasks; take and add tasks until done

• E.g. “self-scheduling” of loop iterations (shared loop counter)

CS 740 F’98– 12 –

Dynamic Tasking with Task Queues

Centralized versus distributed queues

Task stealing with distributed queues
• Can compromise comm and locality, and increase synchronization
• Whom to steal from, how many tasks to steal, ...
• Termination detection
• Maximum imbalance related to size of task

QQ 0 Q2Q1 Q3

All remove tasks

P0 inserts P1 inserts P2 inserts P3 inserts

P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per pr ocess)

Others may
steal

All processes
insert tasks

(a) Centralized task queue

CS 740 F’98– 13 –

Determining Task Granularity

Task granularity: amount of work associated with a
task

General rule:
• Coarse-grained => often less load balance

• Fine-grained => more overhead; often more communication and
contention

Communication and contention actually affected by
assignment, not size
• Overhead by size itself too, particularly with task queues

CS 740 F’98– 14 –

Reducing Serialization

Careful about assignment and orchestration (including
scheduling)

Event synchronization
• Reduce use of conservative synchronization

– e.g. point-to-point instead of barriers, or granularity of pt-to-pt
• But fine-grained synch more difficult to program, more synch ops.

Mutual exclusion
• Separate locks for separate data

– e.g. locking records in a database: lock per process, record, or field

– lock per task in task queue, not per queue

– finer grain => less contention/serialization, more space, less reuse
• Smaller, less frequent critical sections

– don’t do reading/testing in critical section, only modification
– e.g. searching for task to dequeue in task queue, building tree

• Stagger critical sections in time

CS 740 F’98– 15 –

Reducing Inherent Communication

Communication is expensive!

Measure: communication to computation ratio

Focus here on inherent communication
• Determined by assignment of tasks to processes

• Later see that actual communication can be greater

Assign tasks that access same data to same process

Solving communication and load balance NP-hard in
general case

But simple heuristic solutions work well in practice
• Applications have structure!

CS 740 F’98– 16 –

Domain Decomposition

Works well for scientific, engineering, graphics, ...
applications

Exploits local-biased nature of physical problems
• Information requirements often short-range

• Or long-range but fall off with distance

Simple example: nearest-neighbor grid computation

Perimeter to Area comm-to-comp ratio (area to volume in 3-d)

•Depends on n,p: decreases with n, increases with p

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14

P10

n

n n
p

n
p

P15

CS 740 F’98– 17 –

Reducing Extra Work

Common sources of extra work:
• Computing a good partition

– e.g. partitioning in Barnes-Hut or sparse matrix

• Using redundant computation to avoid communication

• Task, data and process management overhead
– applications, languages, runtime systems, OS

• Imposing structure on communication
– coalescing messages, allowing effective naming

Architectural Implications:
• Reduce need by making communication and orchestration efficient

Sequential Work

Max (Work + Synch Wait Time + Comm Cost + Extra Work)
Speedup <

CS 740 F’98– 18 –

Summary of Tradeoffs

Different goals often have conflicting demands
• Load Balance

– fine-grain tasks

– random or dynamic assignment

• Communication

– usually coarse grain tasks

– decompose to obtain locality: not random/dynamic

• Extra Work

– coarse grain tasks

– simple assignment

• Communication Cost:

– big transfers: amortize overhead and latency

– small transfers: reduce contention

CS 740 F’98– 19 –

Impact of Programming Model

• Example: LocusRoute (standard cell router)

while (route_density_improvement > threshold)
 {
 for (i = 1 to num_wires) do
 {
 - rip old wire route out
 - explore new routes
 - place wire using best new route
 }
 }

routing channel

routing channel

routing channel

COST ARRAY

gives cost of
routing through
this channel cell

STANDARD CELL CIRCUIT

standard cell rows

CS 740 F’98– 20 –

Shared-Memory Implementation

Shared memory algorithm:
• Divide cost-array into regions (assign regions to PEs)

• Assign wires to PEs based on the region in which center lies

• Do load balancing using stealing when local queue empty

Good points:
• Good load balancing

• Mostly local accesses

• High cache-hit ratio

CS 740 F’98– 21 –

Message-Passing Implementations
Solution-1:

• Distribute wires and cost-array regions as in sh-mem implementation

• Big overhead when wire-path crosses to remote region

– send computation to remote PE, or

– send messages to access remote data

Solution-2:
• Wires distributed as in sh-mem implementation

• Each PE has copy of full cost array

– one owned region, plus potentially stale copy of others

– send frequent updates so that copies not too stale

• Consequences:

– waste of memory in replication

– stale data => poorer quality results or more iterations

=> In either case, lots of thinking needed on the programmer's part

CS 740 F’98– 22 –

Case Studies

Simulating Ocean Currents
• Regular structure, scientific computing

Simulating the Evolution of Galaxies
• Irregular structure, scientific computing

CS 740 F’98– 23 –

Case 1: Simulating Ocean Currents

• Model as two-dimensional grids
• Discretize in space and time

– finer spatial and temporal resolution => greater accuracy
• Many different computations per time step

– set up and solve equations
• Concurrency across and within grid computations

(a) Cross sections (b) Spatial discretization of a cross section

CS 740 F’98– 24 –

Steps in Ocean Simulation

Computations in a Time-step

CS 740 F’98– 25 –

Partitioning

Exploit data parallelism
• Function parallelism only to reduce synchronization

Static partitioning within a grid computation
• Block versus strip

– inherent communication versus spatial locality in communication
• Load imbalance due to border elements and number of boundaries

Solver has greater overheads than other computations

CS 740 F’98– 26 –

Ocean Simulation

Two Static Partitioning Schemes

CS 740 F’98– 27 –

Impact of Memory Locality

algorithmic = perfect memory system; No Locality = dynamic assignment of
columns to processors; Locality = static subgrid assigment (infinite caches)

CS 740 F’98– 28 –

Impact of Line Size & Data Distribution

no-alloc = round-robin page allocation; otherwise, data assigned to local memory.
L = cache line size.

CS 740 F’98– 29 –

Case 2: Simulating Galaxy Evolution

• Simulate the interactions of many stars evolving over time

• Computing forces is expensive

• O(n2) brute force approach

• Hierarchical Methods take advantage of force law: G m1m2

r2

•Many time-steps, plenty of concurrency across stars within one

Star on which forces
are being computed

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Large group far
enough away to
approximate

CS 740 F’98– 30 –

Barnes-Hut

Locality Goal:
• particles close together in space should be on same processor

Difficulties:
• nonuniform, dynamically changing

CS 740 F’98– 31 –

Application Structure

• Main data structures: array of bodies, of cells, and of pointers to them

– Each body/cell has several fields: mass, position, pointers to others

– pointers are assigned to processes

Compute
forces

Update
properties

T
i
m
e
-
s
t
e
p
s Build tree

Compute
moments of cells

Traverse tr ee
to compute for ces

CS 740 F’98– 32 –

Partitioning

Decomposition: bodies in most phases, cells in
computing moments

Challenges for assignment:
• Nonuniform body distribution => work and comm. nonuniform

– Cannot assign by inspection

• Distribution changes dynamically across time-steps

– Cannot assign statically

• Information needs fall off with distance from body

– Partitions should be spatially contiguous for locality

• Different phases have different work distributions across bodies

– No single assignment ideal for all

– Focus on force calculation phase

• Communication needs naturally fine-grained and irregular

CS 740 F’98– 33 –

Load Balancing

• Equal particles ≠ equal work.

– Solution: Assign costs to particles based on the work they do

• Work unknown and changes with time-steps

– Insight : System evolves slowly

– Solution: Count work per particle, and use as cost for next time-step.

Powerful technique for evolving physical systems

CS 740 F’98– 34 –

A Partitioning Approach: ORB

 Orthogonal Recursive Bisection:
• Recursively bisect space into subspaces with equal work

– Work is associated with bodies, as before

• Continue until one partition per processor

• High overhead for large number of processors

CS 740 F’98– 35 –

Another Approach: Costzones

Insight: Tree already contains an encoding of spatial
locality.

• Costzones is low-overhead and very easy to program

(a) ORB (b) Costzones

P1 P2 P3 P4 P5 P6 P7 P8

CS 740 F’98– 36 –

Barnes-Hut Performance

• Speedups on simulated multiprocessor

• Extra work in ORB is the key difference

Ideal

Costzones

ORB

