
Virtual Memory

CS740
October 13, 1998

Topics
• page tables
• TLBs
• Alpha 21X64 memory system

CS 740 F’98– 2 –

Levels in a Typical Memory Hierarchy

CPUCPU

regsregs

C
a
c
h
e

MemoryMemory
diskdisk

size:
speed:
$/Mbyte:
block size:

200 B
3 ns

4 B

register
reference

cache
reference

memory
reference

disk memory
reference

32 KB / 4MB
6 ns
$256/MB
8 B

128 MB
100 ns
$2/MB
4 KB

20 GB
10 ms
$0.10/MB

larger, slower, cheaper

4 B 8 B 4 KB

cache virtual memory

CS 740 F’98– 3 –

Virtual Memory

Main memory acts as a cache for the secondary storage (disk)

Increases Program-Accessible Memory
• address space of each job larger than physical memory
• sum of the memory of many jobs greater than physical memory

Physical addresses

Disk addresses

Virtual addresses
Address translation

CS 740 F’98– 4 –

Process 1:

Virtual addresses (VA)
Physical addresses (PA)

VP 1
VP 2

Process 2:

PP2

address translation0

0

2n-1

0

2n-1
2m-1

VP 1
VP 2

PP7

PP10

(Read-only
library code)

Address Spaces
• Virtual and physical address spaces divided into equal-sized blocks

– “Pages” (both virtual and physical)

• Virtual address space typically larger than physical
• Each process has separate virtual address space

CS 740 F’98– 5 –

Other Motivations
Simplifies memory management

• main reason today
• Can have multiple processes resident in physical memory
• Their program addresses mapped dynamically

– Address 0x100 for process P1 doesn’t collide with address 0x100 for
process P2

• Allocate more memory to process as its needs grow

Provides Protection
• One process can’t interfere with another

– Since operate in different address spaces
• Process cannot access privileged information

– Different sections of address space have different access permissions

CS 740 F’98– 6 –

Contrast: Macintosh Memory Model
Does not Use Traditional Virtual Memory

All objects accessed through “Handles”
• Indirect reference through table
• Objects can be relocated by updating pointer in table

P1 Handles

P2 Handles

Process
P1

Process
P1

Shared Address Space

CS 740 F’98– 7 –

VM as part of the memory hierarchy

p

p
q

Access word w in
virtual page p (hit)

p

p
q

Access word v in
virtual page q (miss or
“page fault”)

w cache block

page q

p

q

p
q

v cache
block

memory

disk

(page frames)

(pages)

CS 740 F’98– 8 –

VM address translation
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {∅ } address mapping function

n > m

MAP(a) = a' if data at virtual address a is present at physical
 address a' and a' in M

 = ∅ if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memory

a

a
a'

∅

missing item fault

physical address OS performs
this transfer

CS 740 F’98– 9 –

VM address translation

virtual page number page offset

virtual address

physical page number page offset

physical address

011

address translation

1229

31 01112

Notice that the page offset bits don't change as a result of translation

CS 740 F’98– 10 –

Address translation with a page table

virtual page number page offset

virtual address

physical page number page offset

physical address

0111229

31 01112

page table base register

if valid=0
then page
is not in memory
and page fault exception

valid physical page numberaccess

VPN acts as
table index

CS 740 F’98– 11 –

Page Tables

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual page
number

Physical page or
disk address

CS 740 F’98– 12 –

Page Table Operation
Translation

• separate (set of) page table(s) per process
• VPN forms index into page table

Computing Physical Address
• Page Table Entry (PTE) provides information about page

– Valid bit = 1 ==> page in memory.
» Use physical page number (PPN) to construct address

– Valid bit = 0 ==> page in secondary memory

» Page fault
» Must load into main memory before continuing

Checking Protection
• Access rights field indicate allowable access

– E.g., read-only, read-write, execute-only

– Typically support multiple protection modes (e.g., kernel vs. user)
• Protection violation fault if don’t have necessary permission

CS 740 F’98– 13 –

VM design issues
Everything driven by enormous cost of misses:

• hundreds of thousands to millions of clocks.
– vs units or tens of clocks for cache misses.

• disks are high latency
– Typically 10 ms access time

• Moderate disk to memory bandwidth
– 10 MBytes/sec transfer rate

Large block sizes:
• Typically 4KB–16 KB
• amortize high access time
• reduce miss rate by exploiting spatial locality

Perform Context Switch While Waiting
• Memory filled from disk by direct memory access
• Meanwhile, processor can be executing other processes

CS 740 F’98– 14 –

VM design issues (cont)
Fully associative page placement:

• eliminates conflict misses
• every miss is a killer, so worth the lower hit time

Use smart replacement algorithms
• handle misses in software
• miss penalty is so high anyway, no reason to handle in hardware
• small improvements pay big dividends

Write back only:
• disk access too slow to afford write through + write buffer

CS 740 F’98– 15 –

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

Integrating VM and cache

Most Caches “Physically Addressed”
• Accessed by physical addresses
• Allows multiple processes to have blocks in cache at same time
• Allows multiple processes to share pages
• Cache doesn’t need to be concerned with protection issues

– Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
• But this could involve a memory access itself
• Of course, page table entries can also become cached

CS 740 F’98– 16 –

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLB
Translation lookaside buffer (TLB)

• small, usually fully associative cache
• maps virtual page numbers to physical page numbers
• Contains complete page table entries for small number of pages

CS 740 F’98– 17 –

Address translation with a TLB

virtual addressvirtual page number page offset

physical address

31 01112

valid physical page numbertag
valid
dirty

valid
valid
valid

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

process ID

CS 740 F’98– 18 –

Alpha AXP 21064 TLB

Page-frame
address

<30>

Page
offset
<13>

V Physical address
<1><2><2> <21>

R W Tag
<30>

<21>

<9>
34-bit
physical
address

43

21

(Low-order 13 bits
 of address)

(High-order 21 bits of address)

32:1 Mux

page size: 8KB
hit time : 1 clock
miss penalty : 20 clocks
TLB size : ITLB 8 PTEs,
 DTLB 32 PTEs
replacement : random(but
 not last used)
placement: Fully assoc

CS 740 F’98– 19 –

TLB-Process Interactions
TLB Translates Virtual Addresses

• But virtual address space changes each time have context switch

Could flush TLB
• Every time perform context switch
• Refill for new process by series of TLB misses
• ~100 clock cycles each

Could Include Process ID Tag with TLB Entry
• Identifies which address space being accessed
• OK even when sharing physical pages

CS 740 F’98– 20 –

TLB
Lookup

Cache

VA PA

CPU
Data

Tag = HitIndex

Virtually-Indexed Cache

Cache Index Determined from Virtual Address
• Can begin cache and TLB index at same time

Cache Physically Addressed
• Cache tag indicates physical address
• Compare with TLB result to see if match

– Only then is it considered a hit

CS 740 F’98– 21 –

Generating Index from Virtual Address

Size cache so that index is determined by page offset
• Can increase associativity to allow larger cache
• E.g., early PowerPC’s had 32KB cache

– 8-way associative, 4KB page size

Page Coloring
• Make sure lower k bits of VPN match those of PPN
• Page replacement becomes set associative
• Number of sets = 2 k

physical page number page offset

0111229

virtual page number page offset

31 01112

Index

Index

CS 740 F’98– 22 –

Example: Alpha Addressing
Page Size

• Currently 8KB

Page Tables
• Each table fits in single page
• Page Table Entry 8 bytes

– 32 bit physical page number
– Other bits for valid bit, access information, etc.

• 8K page can have 1024 PTEs

Alpha Virtual Address
• Based on 3-level paging structure

• Each level indexes into page table
• Allows 43-bit virtual address when have 8KB page size

page offsetlevel 3level 2level 1

13101010

CS 740 F’98– 23 –

Alpha Page Table Structure

Tree Structure
• Node degree ≤ 1024
• Depth 3

Nice Features
• No need to enforce contiguous

page layout
• Dynamically grow tree as

memory needs increase

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Level 1
Page Table

Level 2
Page Tables

Physical
Pages

Level 3
Page Tables

CS 740 F’98– 24 –

Mapping an Alpha 21064 virtual address

Page offset

Virtual address

Page table
base register +

seg0/seg1
Selector

Physical address

Page offsetPhysical page-frame number

Main memory

L1 page table

L2 page table

+ L3 page table

+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

PTE size:
8 Bytes

13 bits10 bits

PT size:
1K PTEs
(8 KBytes)

13 bits
21 bits

CS 740 F’98– 25 –

Alpha Virtual Addresses
Binary Address Segment Purpose

1…1 11 xxxx…xxx seg1 Kernel accessible virtual addresses
– E.g., page tables for this process

1…1 10 xxxx…xxx kseg Kernel accessible physical addresses
– No address translation performed
– Used by OS to indicate physical addresses

0…0 0x xxxx…xxx seg0 User accessible virtual addresses
– Only part accessible by user program

Address Patterns
• Must have high order bits all 0’s or all 1’s

– Currently 64–43 = 21 wasted bits in each virtual address

• Prevents programmers from sticking in extra information
– Could lead to problems when want to expand virtual address space in

future

CS 740 F’98– 26 –

Alpha Seg0 Memory Layout
Regions

• Data
– Static space for global variables

» Allocation determined at compile
time

» Access via $gp
– Dynamic space for runtime allocation

» E.g., using malloc
• Text

– Stores machine code for program
• Stack

– Implements runtime stack
– Access via $sp

• Reserved
– Used by operating system

» shared libraries, process info, etc.

Reserved

Text (Code)

Static Data

Not yet allocated

Stack

Dynamic Data

0000 03FF 8000 0000
Reserved

(shared libraries)

Not yet allocated

0000 0001 2000 0000

0000 0000 0001 0000

$gp

$sp

CS 740 F’98– 27 –

Alpha Seg0 Memory Allocation

Address Range
• User code can access memory

locations in range
0x0000000000010000 to
0x000003FF80000000

• Nearly 242 ≈ 4.3980465 X1012 byte
range

• In practice, programs access far fewer

Dynamic Memory Allocation
• Virtual memory system only allocates

blocks of memory (“pages”) as
needed

• As stack reaches lower addresses,
add to lower allocation

• As break moves toward higher
addresses, add to upper allocation
– Due to calls to malloc, calloc, etc.

Text (Code)

Static Data

Stack
Region

Dynamic Data
break

Current $sp

Minimum $sp

CS 740 F’98– 28 –

Page Table Configurations
Minimal: 8MB

Maximal: 4TB (All of Seg0)

PTE 0 PTE 0 PTE 0
PTE 1

PTE 1023

•
•
•

Entries for
1024 pages

Level 1 Level 2 Level 3

PTE 0
PTE 1

PTE 1023

•
•
•

Entries for
229 pages

Level 1
Level 2
(X 512)

Level 3
(X 524,288)

PTE 0
PTE 1

PTE 1023

•
•
•

PTE 0
PTE 1

PTE 1023

•
•
•

CS 740 F’98– 29 –

Where Are the Page Tables?
All in Physical Memory?

• Uses up large fraction of physical address space
– ~8GB for maximal configuration

• Hard to move around
– E.g., whenever context switch

Some in Virtual Memory?
• E.g., level 3 page tables put in seg1
• Level 2 PTE give VPN for level 3 page
• Make sure seg1 page tables in physical memory

– Full configuration would require 4GB of page tables
– 1026 must be in physical memory

» 1 Level 1
» 512 (map seg0) + 1 (maps seg1) Level 2’s
» 512 (maps seg1) Level 3’s

• May have two page faults to get single word into memory

CS 740 F’98– 30 –

Expanding Alpha Address Space
Increase Page Size

• Increasing page size 2X increases virtual address space 16X
– 1 bit page offset, 1 bit for each level index

Physical Memory Limits
• Cannot be larger than kseg

VA bits –2 ≥ PA bits

• Cannot be larger than 32 + page offset bits
– Since PTE only has 32 bits for PPN

Configurations
• Page Size 8K 16K 32K 64K
• VA Size 43 47 51 55
• PA Size 41 45 47 48

page offsetlevel 3level 2level 1

13+k10+k10+k10+k

CS 740 F’98– 31 –

V Data
<1>

D
<1> <13> <256>

=?

(65,536
blocks)

<13>

 Tag Index

<16>

Main
memory

Tag

Victim buffer

Write buffer

Block
offset

Index

<8> <5>

1

1

2

2

3

5

5

6

7

8
9

10

11 12

12

12

13

14

15

16

17

18

18

19

19

19

20

17

21

22

23

23

23

24

25

26

27

28

28

 Page-frame
 address <30>

Instruction <64> Data in <64>Data Out <64>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

<64>

<64>

<29>
<29>

<64>

(High-order 21 bits of
 physical address)

Page
offset<13>

Block
offset

Index

<8> <5>

Data page-frame
 address <30>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

(High-order 21 bits of
 physical address)

Page
offset<13>

I
T
L
B

I
C
A
C
H
E

L2
C
A
C
H
E

D
C
A
C
H
E

D
T
L
B

PC

CPU

Alpha AXP 21064

=?

Instruction prefetch stream buffer

Tag <29> Data <256>
=?

Tag <29> Data <256>

Valid Data
<1> <21> <64>

=?

2

4

5

9

12
(256
blocks)

Tag Valid Data
<1> <21> <64>

=?

(256
blocks)

Tag

Delayed write buffer

12:1 Mux

4:1 Mux

32:1 Mux

Magnetic
disk

Alpha AXP 21064

memory hierarchy

cache block size : 32 bytes
page size : 8 KBytes
virtual address size : 43 bits
physical address size : 34 bits

8 entries

256 32-byte blocks
8 KBytes
direct mapped

32 entries

256 32-byte
 blocks
8 KBytes
direct mapped
write through
no write alloc

4 entries64K 32-byte blocks
2 MBytes
direct mapped
write back
write allocate

CS 740 F’98– 32 –

21164 Block Diagram

• Microprocessor Report, Sept. ‘94
• L1 caches small enough to allow virtual indexing
• L2 cache access not required until after TLB completes

CS 740 F’98– 33 –

Processor Chip

Alpha 21164 Hierarchy

• Improving memory performance was main design goal
• Earlier Alpha’s CPUs starved for data

L1 Data
1 cycle latency

8KB, direct
Write-through
Dual Ported

32B lines

L1 Instruction
8KB, direct
32B lines

Regs.
L2 Unified

8 cycle latency
96KB

3-way assoc.
Write-back

Write allocate
32B/64B lines

L3 Unified
1M-64M
direct

Write-back
Write allocate

32B or 64B
 lines

Main
Memory

Up to 1TB

CS 740 F’98– 34 –

Other System Examples
Characteristic Intel Pentium Pro PowerPC 604

Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

