15-740

Computer Arithmetic
A Programmer’s View
Oct. 6, 1998

Topics

• Integer Arithmetic
 – Unsigned
 – Two’s Complement

• Floating Point
 – IEEE Floating Point Standard
 – Alpha floating point
Notation

W: Number of Bits in “Word”

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Sun, etc.</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>long int</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>int</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>short</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>char</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Integers

- Lower case
- E.g., x, y, z

Bit Vectors

- Upper Case
- E.g., X, Y, Z
- Write individual bits as integers with value 0 or 1
- E.g., $X = x_{w-1}, x_{w-2}, \ldots, x_0$
 - Most significant bit on left
Encoding Integers

Unsigned

Two’s Complement

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- C short 2 bytes long

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15740</td>
<td>00111101 01111100</td>
</tr>
<tr>
<td>y</td>
<td>-15740</td>
<td>11000010 10000100</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Numeric Ranges

Unsigned Values
- $UMin = 0$
 000...0
- $UMax = 2^w - 1$
 111...1

Two’s Complement Values
- $TMin = -2^{w-1}$
 100...0
- $TMax = 2^{w-1} - 1$
 011...1

Other Values
- Minus 1
 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$UMax$</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$TMax$</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>$TMin$</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>W=8</th>
<th>W=16</th>
<th>W=32</th>
<th>W=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>−128</td>
<td>−32,768</td>
<td>−2,147,483,648</td>
<td>−9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 \times Tmax + 1$

C Programming
- `#include <limits.h>`
 - K&R Appendix B11
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform-specific
Unsigned & Signed Numeric Values

Example Values

- \(W = 4 \)

Equivalence

- Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings

- \(U2B(x) = B2U^{-1}(x) \)
 - Bit pattern for unsigned integer
- \(T2B(x) = B2T^{-1}(x) \)
 - Bit pattern for two's comp integer

<table>
<thead>
<tr>
<th>(x)</th>
<th>(B2U(x))</th>
<th>(B2T(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

```
short int x = 15740;
unsigned short int ux = (unsigned short) x;
short int y = -15740;
unsigned short int uy = (unsigned short) y;
```

Resulting Value

- No change in bit representation
- Nonnegative values unchanged

 \[ux = 15740 \]

- Negative values change into (large) positive values

 \[uy = 49796 \]
Relation Between 2’s Comp. & Unsigned

Two’s Complement → T2U → T2B → B2U → Unsigned

Maintain Same Bit Pattern

\[\begin{align*}
ux &= \begin{cases}
x & x \geq 0 \\
x + 2^w & x < 0 \end{cases}
\end{align*} \]

\[+2^{w-1} - 2^{w-1} = 2^w \]

\[+2^{w-1} - 2^{w-1} = 2^w \]
Signed vs. Unsigned in C

Constants

• By default are considered to be signed integers
• Unsigned if have “U” as suffix
 \[0U, \; 4294967259U \]

Casting

• Explicit casting between signed & unsigned same as U2T and T2U
 \[
 \begin{align*}
 \text{int } \& \text{ ty; } \\
 \text{unsigned } \& \text{ ux, uy; } \\
 \text{tx } = \text{(int) } \& \text{ ux; } \\
 \text{uy } = \text{(unsigned) } \& \text{ ty; }
 \end{align*}
 \]
• Implicit casting also occurs via assignments and procedure calls
 \[
 \begin{align*}
 \text{tx } &= \text{ ux; } \\
 \text{uy } &= \text{ ty; }
 \end{align*}
 \]
Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for $W = 32$

<table>
<thead>
<tr>
<th>Constant<sub>1</sub></th>
<th>Constant<sub>2</sub></th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive
Sign Extension

Task:
• Given \(w \)-bit signed integer \(x \)
• Convert it to \(w+k \)-bit integer with same value

Rule:
• Make \(k \) copies of sign bit:
• \(X' = \underbrace{x_{w-1}, \ldots, x_{w-1}}_{\text{k copies of MSB}}, x_{w-1}, x_{w-2}, \ldots, x_0} \)
Justification For Sign Extension

Prove Correctness by Induction on k

- Induction Step: extending by single bit maintains value

- Key observation: $-2^{w-1} = -2^w + 2^{w-1}$
- Look at weight of upper bits:

\[
\begin{align*}
X &= -2^{w-1} x_{w-1} \\
X' &= -2^w x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1}
\end{align*}
\]
Integer Operation C Puzzles

• Assume machine with 32 bit word size, two’s complement integers
• For each of the following C expressions, either:
 – Argue that is true for all argument values
 – Give example where not true

<table>
<thead>
<tr>
<th>C Expression</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>x < 0</td>
<td>((x \times 2) < 0)</td>
</tr>
<tr>
<td>ux \geq 0</td>
<td></td>
</tr>
<tr>
<td>x & 7 == 7</td>
<td>((x \ll 30) < 0)</td>
</tr>
<tr>
<td>ux > -1</td>
<td></td>
</tr>
<tr>
<td>x > y</td>
<td>(-x < -y)</td>
</tr>
<tr>
<td>x * x \geq 0</td>
<td></td>
</tr>
<tr>
<td>x > 0 && y > 0</td>
<td>(x + y > 0)</td>
</tr>
<tr>
<td>x \geq 0</td>
<td>(-x \leq 0)</td>
</tr>
<tr>
<td>x \leq 0</td>
<td>(-x \geq 0)</td>
</tr>
</tbody>
</table>

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Standard Addition Function
 • Ignores carry output

Implements Modular Arithmetic

\[s = UAdd_w(u, v) = u + v \mod 2^w \]

\[
UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing Integer Addition

Integer Addition

• 4-bit integers \(u \) and \(v \)
• Compute true sum \(\text{Add}_4(u, v) \)
• Values increase linearly with \(u \) and \(v \)
• Forms planar surface
Visualizing Unsigned Addition

Wraps Around
- If true sum $\geq 2^w$
- At most once

True Sum

2^{w+1}
2^w
0

Modular Sum

Overflow

Overflow
Mathematical Properties

Modular Addition Forms an *Abelian Group*

- **Closed under addition**
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
- **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
- **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
- **0 is additive identity**
 \[\text{UAdd}_w(u, 0) = u \]
- **Every element has additive inverse**
 - Let \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
+ \text{v}
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
\text{u} + \text{v}
\end{array}
\]

Discard Carry: \(w \) bits

\[
\text{TAdd}_w(u, v)
\]

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:
 \[
 \begin{align*}
 \text{int } & \text{s, t, u, v;} \\
 \text{s} & = (\text{int}) ((\text{unsigned}) \text{u} + (\text{unsigned}) \text{v}); \\
 \text{t} & = \text{u} + \text{v}
 \end{align*}
 \]
- Will give \(s == t \)
Characterizing TAdd

Functionality

- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

True Sum

\[\begin{align*}
0 & 111...1 \\
0 & 100...0 \
\quad 2^{w-1} \\
0 & 000...0 \
\quad 0 \\
1 & 100...0 \
\quad -2^{w-1} \\
1 & 000...0 \
\quad -2^w
\end{align*} \]

TAdd Result

\[\begin{align*}
\text{PosOver} & \quad 011...1 \\
\text{NegOver} & \quad 000...0 \quad 100...0
\end{align*} \]

\[TAdd_w(u,v) = \begin{cases}
 u + v + 2^{w-1} & u + v < Tmin_w \quad \text{(NegOver)} \\
 u + v & Tmin_w \leq u + v \leq Tmax_w \\
 u + v - 2^{w-1} & Tmax_w < u + v \quad \text{(PosOver)}
\end{cases} \]
Visualizing 2’s Comp. Addition

Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around
- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- \(TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \)
 - Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse
 - Let \(TComp_w(u) = U2T(UComp_w(T2U(u))) \)
 \(TAdd_w(u, TComp_w(u)) = 0 \)

\[
TComp_w(u) = \begin{cases}
-u & u \neq TMin_w \\
TMin_w & u = TMin_w
\end{cases}
\]
Two’s Complement Negation

Mostly like Integer Negation
• TComp(u) = −u

TMin is Special Case
• TComp(TMin) = TMin

Negation in C is Actually TComp

mx = −x
• mx = TComp(x)
• Computes additive inverse for TAdd

x + −x == 0
Negating with Complement & Increment

In C

\[\sim x + 1 = -x \]

Complement

- Observation: \[\sim x + x = 111\ldots1_2 = -1 \]

\[
\begin{array}{l}
x & |& 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\hline
\sim x & |& 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
\sim x + 1 & |& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Warning: Be cautious treating int’s as integers

- OK here: We are using group properties of TAdd and TComp

\textit{class07.ppt}
Comparing Two’s Complement Numbers

Task

- **Given** signed numbers u, v
- Determine whether or not $u > v$
 - Return 1 for numbers in shaded region below

Bad Approach

- Test $(u - v) > 0$
 - $\text{TSub}(u, v) = \text{TAdd}(u, \text{TComp}(v))$
- Problem: Thrown off by either Negative or Positive Overflow
Comparing with TSub

Will Get Wrong Results

- **NegOver**: \(u < 0, v > 0 \)
 - but \(u-v > 0 \)
- **PosOver**: \(u > 0, v < 0 \)
 - but \(u-v < 0 \)
Multiplication

Computing Exact Product of \(w \)-bit numbers \(x, y \)
- Either signed or unsigned

Ranges
- **Unsigned**: \(0 \leq x \cdot y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2w \) bits
- **Two’s complement min**: \(x \cdot y \geq (-2^{w-1}) \cdot (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1} \)
 - Up to \(2w - 1 \) bits
- **Two’s complement max**: \(x \cdot y \leq (2^w) - 1 \)
 - Up to \(2w \) bits, but only for \(TMin_w \)

Maintaining Exact Results
- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
- Also implemented in Lisp, ML, and other “advanced” languages
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

Standard Multiplication Function

- Ignores high order \(w \) bits

Implements Modular Arithmetic

\[
UMult_w(u, v) = u \cdot v \mod 2^w
\]
Unsigned vs. Signed Multiplication

Unsigned Multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

• Truncates product to \(w \)-bit number \(up = \text{UMult}_w(ux, uy) \)
• Simply modular arithmetic
 \[up = ux \cdot uy \mod 2^w \]

Two’s Complement Multiplication

int x, y;
int p = x * y;

• Compute exact product of two \(w \)-bit numbers \(x, y \)
• Truncate result to \(w \)-bit number \(p = \text{TMult}_w(x, y) \)

Relation

• Signed multiplication gives same bit-level result as unsigned
 • \(up == (\text{unsigned}) p \)
Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

• Addition is commutative group
• Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
• Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
• Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
• 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
• Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two’s complement multiplication and addition
 - Truncating to w bits

Both Form Rings

- Isomorphic to ring of integers mod 2^w

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,
 \[u > 0 \quad \Rightarrow \quad u + v > v \]
 \[u > 0, \; v > 0 \quad \Rightarrow \quad u \cdot v > 0 \]
- These properties are not obeyed by two’s complement arithmetic
 \[T_{Max} + 1 = T_{Min} \]
 \[15213 \times 30426 = -10030 \]
Integer C Puzzle Answers

- Assume machine with 32 bit word size, two’s complement integers
- $TMin$ makes a good counterexample in many cases

\[
\begin{align*}
\text{False: } & TMin \\
\text{True: } & 0 = UMin \\
\text{True: } & x_1 = 1 \\
\text{False: } & 0 \\
\text{False: } & -1, TMin \\
\text{False: } & 30426 \\
\text{False: } & TMax, TMax \\
\text{True: } & -TMax < 0 \\
\text{False: } & TMin
\end{align*}
\]
Floating Point Puzzles

• For each of the following C expressions, either:
 – Argue that is true for all argument values
 – Explain why not true

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NAN

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f < -d
• d * d >= 0.0
• (d+f)−d == f
IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard
Fractional Binary Numbers

Representation

• Bits to right of “binary point” represent fractional powers of 2
• Represents rational number:
 \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Number Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₂</td>
</tr>
</tbody>
</table>

Observation

- Divide by 2 by shifting right
- Numbers of form 0.1₁₁₁₁₁₁ᵰ₂ just below 1.0
 - Use notation 1.0 − ε

Limitation

- Can only exactly represent numbers of the form \(x/2^k \)
- Other numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.0101010101₁₀₁₀₁₁₁₁ₙ₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.00110011₀₀₁₁₁₁ₙ₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.000₁₁₀₀₁₁₀₀₁₁₁₁ₙ₂</td>
</tr>
</tbody>
</table>
Floating Point Representation

Numerical Form

- \(-1^s \times m \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Mantissa \(m\) normally a fractional value in range \([1.0,2.0)\).
 - Exponent \(E\) weights value by power of two

Encoding

- MSB is sign bit
- Exp field encodes \(E\)
- Significand field encodes \(m\)

Sizes

- Single precision: 8 exp bits, 23 significand bits
 - 32 bits total
- Double precision: 11 exp bits, 52 significand bits
 - 64 bits total
“Normalized” Numeric Values

Condition

- \(\text{exp} \neq 000...0 \) and \(\text{exp} \neq 111...1 \)

Exponent coded as \textit{biased} value

- \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value denoted by \texttt{exp}
 - \(\text{Bias} \): Bias value
 - Single precision: 127
 - Double precision: 1023

Mantissa coded with implied leading 1

- \(m = 1.xxx...x_2 \)
 - \(xxx...x \): bits of significand
 - Minimum when \(000...0 \) (\(m = 1.0 \))
 - Maximum when \(111...1 \) (\(m = 2.0 - \epsilon \))
 - Get extra leading bit for “free”
Normalized Encoding Example

Value

\[\text{Float } F = 15740.0; \]
\[15740_{10} = 11110101111100_2 = 1.1101101101101_2 \times 2^{13} \]

Significand

\[m = \underbrace{1.1101101101101}_2 \]
\[\text{sig} = 11011011011010000000000000_2 \]

Exponent

\[E = 13 \]
\[\text{Bias} = 127 \]
\[\text{Exp} = 140 = 10001100_2 \]

Floating Point Representation of 15740.0:

<table>
<thead>
<tr>
<th>Hex:</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>5</th>
<th>f</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary:</td>
<td>0100</td>
<td>0110</td>
<td>0111</td>
<td>0101</td>
<td>1111</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>140:</td>
<td>100</td>
<td>0110</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15740:</td>
<td>1111</td>
<td>0101</td>
<td>1111</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denormalized Values

Condition
 • $\text{exp} = 000...0$

Value
 • Exponent value $E = -\text{Bias} + 1$
 • Mantissa value $m = \,0.\,xxx\ldots x_2$
 - $xxx\ldots x$: bits of significand

Cases
 • $\text{exp} = 000\ldots0$, $\text{significand} = 000\ldots0$
 - Represents value 0
 - Note that have distinct values $+0$ and -0
 • $\text{exp} = 000\ldots0$, $\text{significand} \neq 000\ldots0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - “Gradual underflow”
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp</th>
<th>Significand</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00…00</td>
<td>00…00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00…00</td>
<td>00…01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>• Single</td>
<td></td>
<td></td>
<td>$\approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td>• Double</td>
<td></td>
<td></td>
<td>$\approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00…00</td>
<td>11…11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>• Single</td>
<td></td>
<td></td>
<td>$\approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td>• Double</td>
<td></td>
<td></td>
<td>$\approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00…01</td>
<td>00…00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>• Just larger than largest denormalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01…11</td>
<td>00…00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11…10</td>
<td>11…11</td>
<td>$(2.0 - \varepsilon) \times 2^{127,1023}$</td>
</tr>
<tr>
<td>• Single</td>
<td></td>
<td></td>
<td>$\approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td>• Double</td>
<td></td>
<td></td>
<td>$\approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Memory Referencing Bug Example

Demonstration of corruption by out-of-bounds array reference

```c
main ()
{
    long int a[2];
    double d = 3.14;
    a[2] = 1073741824; /* Out of bounds reference */
    printf("d = %.15g\n", d);
    exit(0);
}
```

<table>
<thead>
<tr>
<th>Alpha</th>
<th>MIPS</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>-g</td>
<td>5.30498947741318e-315</td>
<td>3.13999998664856</td>
</tr>
<tr>
<td>-O</td>
<td>3.14</td>
<td>3.14</td>
</tr>
</tbody>
</table>
Referencing Bug on Alpha

Alpha Stack Frame (-g)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a[1]</td>
<td></td>
</tr>
</tbody>
</table>
| a[0]| long int a[2];
 | double d = 3.14;
 | a[2] = 1073741824;

Optimized Code

- Double d stored in register
- Unaffected by errant write

Alpha -g

- 1073741824 = 0x40000000 = 2^{30}
- Overwrites all 8 bytes with value 0x00000000040000000
- Denormalized value 2^{30} X (smallest denorm 2^{-1074}) = 2^{-1044}
- \approx 5.305 \times 10^{-315}
Referencing Bug on MIPS

MIPS Stack Frame (-g)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d</td>
</tr>
<tr>
<td>a[1]</td>
<td></td>
</tr>
<tr>
<td>a[0]</td>
<td></td>
</tr>
</tbody>
</table>

long int a[2];
double d = 3.14;
a[2] = 1073741824;

MIPS -g

- Overwrites lower 4 bytes with value 0x40000000
- Original value 3.14 represented as 0x40091eb851eb851f
- Modified value represented as 0x40091eb840000000
- Exp = 1024 E = 1024−1023 = 1
- Mantissa difference: .0000011eb851f_{16}
- Integer value: 11eb851f_{16} = 300,647,711_{10}
- Difference = 2^1 X 2^{-52} X 300,647,711 \approx 1.34 \times 10^{-7}
- Compare to 3.140000000 − 3.139999866 = 0.000000134
Special Values

Condition

• \(\exp = 111\ldots1 \)

Cases

• \(\exp = 111\ldots1, \text{significand} = 000\ldots0 \)
 – Represents value \(\infty \) (infinity)
 – Operation that overflows
 – Both positive and negative
 – E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -\infty \)

• \(\exp = 111\ldots1, \text{significand} \neq 000\ldots0 \)
 – Not-a-Number (NaN)
 – Represents case when no numeric value can be determined
 – E.g., \(\sqrt{-1}, \infty - \infty \)
 – No fixed meaning assigned to significand bits
Special Properties of Encoding

FP Zero Same as Integer Zero
 • All bits = 0

Can (Almost) Use Unsigned Integer Comparison
 • Must first compare sign bits
 • NaNs problematic
 – Will be greater than any other values
 – What should comparison yield?
 • Otherwise OK
 – Denorm vs. normalized
 – Normalized vs. infinity
Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into significand

Rounding Modes (illustrate with $ rounding)

<table>
<thead>
<tr>
<th>Rounding Mode</th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>−$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$1.00</td>
<td>$2.00</td>
<td>−$1.00</td>
</tr>
<tr>
<td>−∞</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$1.00</td>
<td>$2.00</td>
<td>−$2.00</td>
</tr>
<tr>
<td>+∞</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$2.00</td>
<td>$3.00</td>
<td>−$1.00</td>
</tr>
<tr>
<td>Nearest Even (default)</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$2.00</td>
<td>$2.00</td>
<td>−$2.00</td>
</tr>
</tbody>
</table>
A Closer Look at Round-To-Even

Default Rounding Mode

• Hard to get any other kind without dropping into assembly
• All others are statistically biased
 – Sum of set of positive numbers will consistently be over- or under-estimated

Applying to Other Decimal Places

• When exactly halfway between two possible values
 – Round so that least significant digit is even
• E.g., round to nearest hundredth

 1.2349999 1.23 (Less than half way)
 1.2350001 1.24 (Greater than half way)
 1.2350000 1.24 (Half way—round up)
 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

Binary Fractional Numbers
- “Even” when least significant bit is 0
- Half way when bits to right of rounding position = $100..._2$

Examples
- Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2-3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2-1/4</td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2-5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2-1/2</td>
</tr>
</tbody>
</table>
FP Multiplication

Operands

$(-1)^{s_1} m_1 \ 2^{E_1}$

$(-1)^{s_2} m_2 \ 2^{E_2}$

Exact Result

$(-1)^s m \ 2^E$

- **Sign** s: $s_1 \land s_2$
- **Mantissa** m: $m_1 \times m_2$
- **Exponent** E: $E_1 + E_2$

Fixing

- Overflow if E out of range
- Round m to fit significand precision

Implementation

- Biggest chore is multiplying mantissas
FP Addition

Operand

\[(\neg1)^{s1} m1 \ 2^{E1}\]
\[(\neg1)^{s2} m2 \ 2^{E2}\]

- Assume \(E1 > E2\)

Exact Result

\[(-1)^s m \ 2^E\]

- Sign \(s\), mantissa \(m\):
 - Result of signed align & add
- Exponent \(E\): \(E1 - E2\)

Fixing

- Shift \(m\) right, increment \(E\) if \(m \geq 2\)
- Shift \(m\) left \(k\) positions, decrement \(E\) by \(k\) if \(m < 1\)
- Overflow if \(E\) out of range
- Round \(m\) to fit significand precision
Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition? YES
 - But may generate infinity or NaN
- Commutative? YES
- Associative? NO
 - Overflow and inexactness of rounding
- 0 is additive identity? YES
- Every element has additive inverse ALMOST
 - Except for infinities & NaNs

Montonicity

- $a \leq b \Rightarrow a+c \leq b+c$? ALMOST
 - Except for infinities & NaNs
Algebraic Properties of FP Mult

Compare to Commutative Ring

• Closed under multiplication? YES
 – But may generate infinity or NaN

• Multiplication Commutative? YES

• Multiplication is Associative? NO
 – Possibility of overflow, inexactness of rounding

• 1 is multiplicative identity? YES

• Multiplication distributes over addition? NO
 – Possibility of overflow, inexactness of rounding

Montonicity

• \(a \leq b \) & \(c \geq 0 \) \Rightarrow a \times c \leq b \times c \) ? ALMOST
 – Except for infinities & NaNs
Floating Point in C

C Supports Two Levels

- float single precision
- double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 » Generally saturates to Tmin or Tmax
- int to double
 - Exact conversion, as long as int has \(\leq 54 \) bit word size
- int to float
 - Will round according to rounding mode
Answers to Floating Point Puzzles

int x = ...;
float f = ...;
double d = ...;

• \(x == (\text{int})(\text{float}) \ x \)
 No: 24 bit mantissa

• \(x == (\text{int})(\text{double}) \ x \)
 Yes: 53 bit mantissa

• \(f == (\text{float})(\text{double}) \ f \)
 Yes: increases precision

• \(d == (\text{float}) \ d \)
 No: looses precision

• \(f == -(-f); \)
 Yes: Just change sign bit

• \(2/3 == 2/3.0 \)
 No: 2/3 == 1

• \(d < 0.0 \Rightarrow ((d*2) < 0.0) \)
 Yes!

• \(d > f \Rightarrow -f < -d \)
 Yes!

• \(d * d >= 0.0 \)
 Yes!

• \((d+f)-d == f \)
 No: Not associative

Assume neither \(d \) nor \(f \) is NAN
Alpha Floating Point

Implemented as Separate Unit
- Hardware to add, multiply, and divide
- Floating point data registers
- Various control & status registers

Floating Point Formats
- S_Floating (C float): 32 bits
- T_Floating (C double): 64 bits

Floating Point Data Registers
- 32 registers, each 8 bytes
- Labeled $f0$ to $f31$
- $f31$ is always 0.0

Return Values
- Procedure arguments
 - $f0$ to $f1$, $f2$ to $f3$, $f4$ to $f5$
 - $f6$ to $f7$, $f8$ to $f9$
 - $f10$ to $f11$, $f12$ to $f13$
 - $f14$ to $f15$, $f16$ to $f17$
 - $f18$ to $f19$, $f20$ to $f21$
 - $f22$ to $f23$, $f24$ to $f25$
 - $f26$ to $f27$, $f28$ to $f29$
 - $f30$
 - $f31$

Callee Save Temporaries:
- Always 0.0

Caller Save Temporaries:
- Procedure arguments
- Always 0.0

Callee Save Temporaries:
Floating Point Code Example

Compute Inner Product of Two Vectors

- Single precision arithmetic

```c
float inner_prodF
    (float x[], float y[],
     int n)
{
    int i;
    float result = 0.0;
    for (i = 0; i < n; i++) {
        result += x[i] * y[i];
    }
    return result;
}
```

```assembly
    cpys $f31,$f31,$f0 # result = 0.0
    bis $31,$31,$3   # i = 0
    cmplt $31,$18,$1  # 0 < n?
    beq $1,$102    # if not, skip loop
    .align 5
    $104:
    s4addq $3,0,$1  # $1 = 4 * i
    addq $1,$16,$2  # $2 = &x[i]
    addq $1,$17,$1  # $1 = &y[i]
    lds $f1,0($2)  # $f1 = x[i]
    lds $f10,0($1)  # $f10 = y[i]
    muls $f1,$f10,$f1  # $f1 = x[i] * y[i]
    adds $f0,$f1,$f0  # result += $f1
    addl $3,1,$3   # i++
    cmplt $3,$18,$1  # i < n?
    bne $1,$104    # if so, loop
    $102:
    ret $31,($26),1  # return
```
Numeric Format Conversion

Between Floating Point and Integer Formats

- Special conversion instructions \texttt{cvttq}, \texttt{cvtqt}, \texttt{cvtts}, \texttt{cvtst}, ...
- Convert source operand in one format to destination in other
- Both source & destination must be FP register
 - Transfer to and from GP registers via memory store/load

\begin{center}
\begin{tabular}{|l|l|}
\hline
C Code & Conversion Code \\
\hline
\texttt{float double2float(double d)} & \texttt{cvtts \$f16,\$f0} \\
\hspace{1cm} \{ \hspace{1cm} & \hspace{1cm} \texttt{[Convert T_Floating to S_Floating]} \}
\texttt{return (float) d;} & \texttt{stq \$16,0(\$30)} \\
& \texttt{ldt \$f1,0(\$30)} \\
& \texttt{cvtqt \$f1,\$f0} \\
\texttt{\} & \texttt{[Pass through stack and convert]} \\
\hline
double long2double(long i) & \}
\texttt{\{ \hspace{1cm} \{ return (double) i; } \\
& \}
\texttt{\} } \\
\hline
\end{tabular}
\end{center}
Getting FP Bit Pattern

double bit2double(long i)
{
 union {
 long i;
 double d;
 } arg;
 arg.i = i;
 return arg.d;
}

double long2double(long i)
{
 return (double) i;
}

- Union provides direct access to bit representation of double
- bit2double generates double with given bit pattern
 - NOT the same as (double) i
 - Bypasses rounding step
Alpha 21164 Arithmetic Performance

Integer

<table>
<thead>
<tr>
<th>Operation</th>
<th>Latency</th>
<th>Issue Rate</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>1</td>
<td>2 / cycle</td>
<td>Two integer pipes</td>
</tr>
<tr>
<td>LW Multiply</td>
<td>8</td>
<td>1 / 8 cycles</td>
<td>Unpipelined</td>
</tr>
<tr>
<td>QW Multiply</td>
<td>16</td>
<td>1 / 16 cycles</td>
<td>Unpipelined</td>
</tr>
<tr>
<td>Divide</td>
<td>∞</td>
<td>0 / cycle</td>
<td>Not implemented</td>
</tr>
</tbody>
</table>

Floating Point

<table>
<thead>
<tr>
<th>Operation</th>
<th>Latency</th>
<th>Issue Rate</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>4</td>
<td>1 / cycle</td>
<td>Fully pipelined</td>
</tr>
<tr>
<td>Multiply</td>
<td>4</td>
<td>1 / cycle</td>
<td>Fully pipelined</td>
</tr>
<tr>
<td>SP Divide</td>
<td>10</td>
<td>1 / 10 cycle</td>
<td>Unpipelined</td>
</tr>
<tr>
<td>DP Divide</td>
<td>23</td>
<td>1 / 23 cycle</td>
<td>Unpipelined</td>
</tr>
</tbody>
</table>