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Performance expressed as a time

Absolute time measures
• difference between start and finish of an operation
• synonyms: running time, elapsed time, response time, latency, 

completion time, execution time
• most straightforward performance measure

Relative (normalized) time measures
• running time normalized to some reference time 
• (e.g. time/reference time)

Guiding principle: Choose performance measures that 
track running time.
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Performance expressed as a rate

Rates are performance measures expressed in units of 
work per unit time.

Examples:
• millions of instructions / sec (MIPS)
• millions of floating point instructions / sec (MFLOPS)
• millions of bytes / sec (MBytes/sec)
• millions of bits / sec (Mbits/sec)
• images / sec
• samples / sec
• transactions / sec (TPS)
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Performance expressed as a rate(cont)

Key idea: Report rates that track execution time.

Example: Suppose we are measuring a program that 
convolves a stream of images from a video camera.

  
Bad performance measure: MFLOPS

• number of floating point operations depends on the particular 
convolution algorithm: n^2 matix-vector product vs nlogn fast 
Fourier transform. An FFT with a bad MFLOPS rate may run faster 
than a matrix-vector product with a good MFLOPS rate.

Good performance measure: images/sec
• a program that runs faster will convolve more images per second.
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Performance expressed as a rate(cont)

Fallacy: Peak rates track running time.

Example: the i860 is advertised as having a peak rate of 
80 MFLOPS (40 MHz with 2 flops per cycle). 

However,  the measured performance of some 
compiled linear algebra kernels (icc -O2) tells a 
different story:

Kernel 1d fft sasum saxpy sdot sgemm sgemv spvma
MFLOPS 8.5 3.2 6.1 10.3 6.2 15.0 8.1
%peak 11% 4% 7% 13% 8% 19% 10%
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Relating time to system measures

Suppose that for some program we have: 
• T seconds running time (the ultimate performance measure)
• C clock ticks, I instructions, P seconds/tick (performance measures 

of interest to the system designer)

T secs = C ticks x P secs/tick
            =  (I inst/I inst) x C ticks x P secs/tick
T secs = I inst x (C ticks/I inst) x P secs/tick

running
time

instruction
count

avg clock
ticks per
instruction
(CPI)

clock period
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Pipeline latency and throughput

video processing system

(N input images)

In,...,I3, I2, I1

(N output images)

On,...,O3, O2, O1

Latency (L): time to process an individual image.

Throughput (R): images processed per unit time

One image can be processed by the system at any point in time
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Video system performance

L = 3 secs/image.

R = 1/L = 1/3 images/sec.

T = L + (N-1)1/R
   = 3N

time

1
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1 out
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Pipelining the video system

stage 1
(buffer)

video pipeline

(L1,R1) (L3,R3)(L2,R2)

stage 3
(display)

stage 2
(CPU)

(N input images)

In,...,I3, I2, I1

(N output images)

On,...,O3, O2, O1

One image can be in each stage at any point in time. 

Li = latency of stage i
Ri = throughput of stage i

L = L1 + L2 + L3
R = min(R1, R2, R3)
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Pipelined video system performance

time

1
Suppose:
 
L1 = L2 = L3 = 1

Then:

L = 3 secs/image.

R = 1 image/sec.

T = L + (N-1)1/R
   = N + 2
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Relating time to latency and thruput

In general:
• T = L + (N-1)/R

The impact of latency and throughput on running time 
depends on N:
• (N  = 1) => (T = L)
• (N  >> 1) => (T = N-1/R)

To maximize throughput, we should try to maximize the 
minimum throughput over all stages (i.e., we strive for 
all stages to have equal throughput).
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Amdahl’s law

You plan to visit a friend in Normandy France and must 
decide whether it is worth it to take the Concorde SST 
($3,100) or a 747 ($1,021) from NY to Paris, assuming 
it will take 4 hours Pgh to NY and 4 hours Paris to 
Normandy.

 
 time NY->Paris total trip time speedup over 747

747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4

Taking the SST (which is 2.2 times faster) speeds up 
the overall trip by only a factor of 1.4!



CS 740 F’98 13 

Amdahl’s law (cont)

T1 T2

Old program (unenhanced)
T1 = time that can NOT
     be enhanced.

T2 = time that can be
     enhanced.

T2’ = time after the
      enhancement.       

Old time: T = T1 + T2

T1’ = T1 T2’ <= T2

New program (enhanced)

New time: T’ = T1’ + T2’

Speedup: Soverall = T / T’
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Amdahl’s law (cont)

Two key parameters: 
Fenhanced = T2 / T      (fraction of original time that can be improved)
Senhanced = T2 / T2’   (speedup of enhanced part)

T’ = T1’ + T2’ = T1 + T2’ = T(1-Fenhanced) + T2’
    = T(1-Fenhanced) + (T2/Senhanced)                       [by def of Senhanced]
    = T(1-Fenhanced) + T(Fenhanced /Senhanced)          [by def of Fenhanced]
    = T((1-Fenhanced) + Fenhanced/Senhanced)

Amdahl’s Law:
    Soverall = T / T’ = 1/((1-Fenhanced) + Fenhanced/Senhanced)   

Key idea: Amdahl’s law quantifies the general notion 
of diminishing returns. It applies to any activity, not 
just computer programs.
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Amdahl’s law (cont)

Trip example: Suppose that for the New York to Paris 
leg,  we now consider the possibility of taking a 
rocket ship (15 minutes)  or a handy rip in the fabric 
of space-time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1
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Amdahl’s law (cont)

Useful corollary to Amdahl’s law:
• 1  <=  Soverall    <= 1 / (1 - Fenhanced)

Fenhanced Max Soverall Fenhanced Max Soverall

0.0 1 0.9375 16

0.5 2 0.96875 32

0.75 4 0.984375 64

0.875 8 0.9921875 128

Moral: It is hard to speed up a program.

Moral++ : It is easy to make premature optimizations.
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Computer System

diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory

I/O
controller

I/O
controller

I/O
controller

Display Network

Reg
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Levels in a typical memory hierarchy

CPU
regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
block size:

200 B
3 ns

4 B

register 
reference

cache
reference

memory
reference

disk memory
reference

32 KB / 4MB
6 ns
$256/MB
8 B

128 MB
100 ns
$2/MB
4  KB

20 GB
10 ms
$0.8/MB

larger, slower, cheaper

4 B 8 B 4 KB

cache virtual memory
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Scaling to 0.1µm

• Semiconductor Industry Association, 1992 Technology Workshop

Year 1992 1995 1998 2001 2004 2007

Feature size 0.5 0.35 0.25 0.18 0.12 0.10

DRAM cap 16M 64M 256M 1G 4G 16G

Gates/chip 300K 800K 2M 5M 10M 20M

Chip cm2 2.5 4.0 6.0 8.0 10.0 12.5

I/Os 500 750 1500 2000 3500 5000

off chip MHz 60 100 175 250 350 500

on chip MHz 120 200 350 500 700 1000
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Static RAM (SRAM)

Fast
• ~10 ns [1995]

Persistent 
• as long as power is supplied
• no refresh required 

Expensive 
• ~$256/MByte [1995]
• 6 transistors/bit

Stable
• High immunity to noise and environmental disturbances

Technology for caches



CS 740 F’98 21 

Anatomy of an SRAM bit (cell)

(6 transistors)

b b’

bit line bit line

word line Read:
   - set bit lines high
   - set word line high
   - see which bit line goes low

Write:
   - set bit lines to opposite values
   - set word line
   - Flip cell to new state
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SRAM Cell Principle

Inverter Amplifies
• Negative gain
• Slope < –1 in middle
• Saturates at ends

Inverter Pair Amplifies
• Positive gain
• Slope > 1 in middle
• Saturates at ends V1

V2

Vin

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vin
V1

V2

Slope < –1

Slope > 1
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Bistable Element

Stability
• Require Vin = V2
• Stable at endpoints

– recover from pertubation
• Metastable in middle

– Fall out when perturbed

Ball on Ramp Analogy

Vin
V1

V2

Vin

V2

Vin

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Stable

Metastable

Stable
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Example 1-level-decode SRAM (16 x 8)

Address
decoder

A0

A1

A2

A3

sense/write
amps

b7’b7

d7

sense/write
amps

b1’b1

d1

sense/write
amps

b0’b0

d0Input/output lines

W0

W1

W15

memory
cells

R/W’
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Dynamic RAM (DRAM)

Slower than SRAM 
• access time ~70 ns [1995]

Nonpersistant 
• every row must be accessed every ~1 ms (refreshed)

Cheaper than SRAM 
• ~$2/MByte [1997]
• 1 transistor/bit

Fragile
• electrical noise, light, radiation

Workhorse memory technology
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Anatomy of a DRAM Cell

Word Line

Bit
Line

Storage Node
Access

Transistor Cnode

CBL

Writing

Word Line

Bit Line

Reading

Word Line

Bit Line

∆V ~ Cnode / CBL

V

Storage Node
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Addressing arrays with bits

Consider an R x C array of addresses, where R = 2^r and C = 2^c. 
Then for each address,
    row(address) = address / C = leftmost r bits of address
    col(address) = address % C = righmost c bits of address

r bits c bits

rowaddress = col

0 1 2 3
0 000 001 010 011
1 100 101 110 111

row 1 col 2
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Example 2-level decode DRAM (64Kx1)

Row
address

latch

Column
address

latch

Row 
decoder

256x256
cell array

column
sense/write

amps

column
latch and 
decoder

A7-A0

\
8

\
8

R/W’

Dout Din
CAS

RAS

row

col

Why is the cell array square?

256 Rows

256 Columns
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DRAM Operation

Row Address (~50ns)
• Set Row address on address lines & strobe RAS
• Entire row read & stored in column latches
• Contents of row of memory cells destroyed

Column Address (~10ns)
• Set Column address on address lines & strobe CAS
• Access selected bit

– READ: transfer from selected column latch to Dout
– WRITE: Set selected column latch to Din

Rewrite (~30ns)
• Write back entire row



CS 740 F’98 30 

Observations About DRAMs

Timing
• Access time = 60ns < cycle time = 90ns
• Need to rewrite row

Must Refresh Periodically
• Perform complete memory cycle for each row

• Approx. every 1ms
• Sqrt(n) cycles
• Handled in background by memory controller

Inefficient Way to Get Single Bit
• Effectively read entire row of Sqrt(n) bits
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Enhanced Performance DRAMs

Row
address

latch

Column
address

latch

Row 
decoder 256x256

cell array

sense/write
amps

column
latch and 
decoder

A7-A0

\
8

\
8

R/W’

CAS

RAS

row

col

Entire row buffered here

row access time col access time cycle time page mode cycle time
        50ns            10ns    90ns             25ns

Conventional Access
• Row + Col
• RAS CAS RAS CAS ...

Page Mode
• Row + Series of columns

• RAS CAS CAS CAS ...
• Gives successive bits

Video RAM
• Shift out entire row sequentially
• At video rate

Typical Performance
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DRAM Driving Forces

Capacity
• 4X per generation

– Square array of cells
• Typical scaling

– Lithography dimensions 0.7X
» Areal density 2X

– Cell function packing 1.5X
– Chip area 1.33X

• Scaling challenge
– Typically Cnode / CBL  = 0.1–0.2
– Must keep Cnode high as shrink cell size

Retention Time
• Typically 16–256 ms
• Want higher for low-power applications
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DRAM Storage Capacitor

d

Dielectric Material
Dielectric Constant ε

Plate
Area A

C = εA/d

Planar Capacitor
• Up to 1Mb
• C decreases linearly with 

feature size

Trench Capacitor
• 4–256 Mb
• Lining of hole in substrate

Stacked Cell
• > 1Gb
• On top of substrate
• Use high ε dielectric
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Trench Capacitor

Process
• Etch deep hole in substrate

– Becomes reference plate
• Grow oxide on walls

– Dielectric
• Fill with polysilicon plug

– Tied to storage node
Storage Plate

Reference Plate

SiO2 Dielectric
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IBM DRAM Evolution

• IBM J. R&D, Jan/Mar ‘95
• Evolution from 4 – 256 Mb
• 256 Mb uses cell with area 0.6 µm2

4 Mb Cell Structure

Cell Layouts

4Mb

16Mb

64Mb

256Mb
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Mitsubishi Stacked Cell DRAM

• IEDM ‘95
• Claim suitable for 1 – 4 Gb

Technology
• 0.14 µm process

– Synchrotron X-ray source
• 8 nm gate oxide
• 0.29 µm2 cell

Storage Capacitor
• Fabricated on top of everything else
• Rubidium electrodes
• High dielectric insulator

– 50X higher than SiO2

– 25 nm thick
• Cell capacitance 25 femtofarads

Cross Section of 2 Cells
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Mitsubishi DRAM Pictures
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Magnetic Disks

The read/write head 
floats over the disk 
surface and moves 
back and forth on 
an arm from track 
to track.

Disk surface spins at
3600–7200 RPM

read/write head

arm

The surface consists
of a set of concentric
magnetized rings called
tracks

Each track is divided
into sectors



CS 740 F’98 39 

Disk Capacity

Parameter 540MB Example
• Number Platters 8
• Surfaces / Platter 2
• Number of tracks 1046
• Number sectors / track 63
• Bytes / sector 512

Total Bytes 539,836,416
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Disk Operation

Operation
• Read or write complete sector

Seek
• Position head over proper track
• Typically 10ms

Rotational Latency
• Wait until desired sector passes under head
• Worst case: complete rotation

– 3600RPM: 16.7 ms

Read or Write Bits
• Transfer rate depends on # bits per track and rotational speed 
• E.g., 63 * 512 bytes @3600RPM = 1.9 MB/sec.



CS 740 F’98 41 

Disk Performance

Getting First Byte
• Seek + Rotational latency 10,000 – 27,000 microseconds

Getting Successive Bytes
• ~ 0.5 microseconds each

Optimizing
• Large block transfers more efficient
• Try to do other things while waiting for first byte

– Switch context to other computing task
– Disk controller buffers sector
– Interrupts processor when transfer completed
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Disk Technology

Seagate ST-12550N Barracuda 2 Disk
• Linear density 52,187. bits per inch (BPI)

– Bit spacing 0.5 microns
• Track density 3,047. tracks per inch (TPI)

– Track spacing 8.3 microns
• Total tracks 2,707. tracks
• Rotational Speed 7200. RPM
• Avg Linear Speed 86.4 kilometers / hour
• Head Floating Height 0.13 microns

Analogy
• Put Sears Tower on side
• Fly around world 2.5 cm off ground
• 8 seconds per orbit
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Storage trends (memory)

metric 1980 1985 1990 1995 1995:1980

$/MB 8,000 880 100 30 266
access (ns) 375 200 100 70     5
typical size(MB) 0.064 0.256 4 16 250   

DRAM

metric 1980 1985 1990 1995 1995:1980

$/MB 19,200 2,900 320 256 75
access (ns) 300 150 35 15 20

SRAM

culled from back issues of Byte and PC Magazine
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Storage trends (disk)

metric 1980 1985 1990 1995 1995:1980

$/MB 500 100 8 0.30 1,600
access (ms) 87 75 28 10        9
typical size(MB) 1 10 160 1,000 1,000

Disks

culled from back issues of Byte and PC Magazine
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Storage price/MByte

culled from back issues of Byte and PC Magazine
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Storage access times

culled from back issues of Byte and PC Magazine
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Processor clock rates

metric 1980 1985 1990 1995 1995:1980

typical clock(MHz) 1 6 20 150 150
processor  8080 286 386 pentium

Processors

culled from back issues of Byte and PC Magazine



CS 740 F’98 48 

The widening processor/memory gap

culled from back issues of Byte and PC Magazine
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Memory technology summary

Cost and density improving at enormous rates.
Speed lagging processor performance
Memory hierarchies help narrow the gap:

• small fast SRAMS (cache) at upper levels
• large slow DRAMS (main memory) at lower levels
• Incredibly large & slow disks to back it all up

Locality of reference makes it all work
• Keep most frequently accessed data in fastest memory


