
Shared Memory Systems
Part III

Randal E. Bryant
CS 740

Dec. 3, 1997

Topics
• Fixing network-based coherency protocol
• Adding features
• Buffering & resource considerations
• Comparison to “real” protocols

– SGI Origin



CS 740 F’97– 2 –

Network-Based Cache Coherency
Home-Based Protocol

• Each block has “home”
– Memory controller 

tracking its status
– Based on physical 

address
• Home  maintains

– Block status
– Identity of copy holders

» 1 bit flag / processor
– Only need entry when 

block has remote copy

Memory Controller 4

0 1 0 1 0 1 0 1shared

Status Copy HoldersBlock

24

0 1 0 0 0 0 0 0Exclusive25

0 0 0 0 0 0 0 0uncached26

Block Status Values
• Shared

– 1 or more remote, read-only copies
• Exclusive

– Single, writeable copy in remote 
cache

• Uncached
– No remote copies



CS 740 F’97– 3 –

Implementation Details
• p Processor identifier
• a Block address
• d Block data

Messages from Cache to Block Home
• Cache requests

Type Contents Purpose

READ p, a Processor p wants to read a

XREAD p, a Processor p wants to write a
• Cache replies

Type Contents Purpose

WRITEBACK p, a, d Proc. p flushes exclusive block
WRITEHOLD p, a, d Proc. p shares exclusive block
RELEASE p, a Proc. p flushes clean block

– Treat evictions as unsolicited replies



CS 740 F’97– 4 –

Implementation Details (Cont.)
• p Processor identifier
• a Block address
• d Block data

Messages from Block Home to Cache
• Home requests

Type Contents Purpose

INVALIDATE p, a Give up clean copy

FETCH p, a Get readable copy from remote
XFETCH p, a Get writeable copy from remote

• Home replies
Type Contents Purpose 
DATA p, a, d Reply to read / write request
NACK p, a Cannot fulfill request



CS 740 F’97– 5 –

Tricky Issues
Independent Actions between Cache & Home

• Cache evicts exclusive block while home in process of fetching
– Home will get WRITEBACK when expecting WRITEHOLD

– Cache will receive FETCH for invalid block
• Cache evicts exclusive block while home in process of xfetching

– Home will receive WRITEBACK generated by cache
– Cache will receive XFETCH for invalid block

Independent Actions between Two Processor Caches
• Processor r attempts read or write while home handling read or write 

request by processor p
– Home sends NACK to processor r
– Processor r retries read or write operation

• Potential for livelock
– Processor r keeps getting NACK’ed



CS 740 F’97– 6 –

Performing Processor Operations
• Processor requests cache to perform load or store

– On word in cache block i
• Cache line currently holds block t

– May or may not have i = t
• Cache can either:

– Perform operation using local copy
– Issue request message to network (italicized )

» Wait for reply (bold)
» Stall until completed

Processor

Cache

clean t

Status Tag DataBlock = i

Data

Read / Write

Done / Stall

Cache Request

Home Reply

Network



CS 740 F’97– 7 –

Cache Handling of Processor Read

Invalid Shared

Exclusive

i Requested Block
t Current Block

Read
Pending

Read Hit

Read Hit

Read Miss
READ(p,i)

Read Miss
RELEASE(p,t)

DATA(p,i,d)

Read Miss
WRITEBACK(p,t,d)

NACK(p,i)



CS 740 F’97– 8 –

Processing by Home
Home Memory Controller

• Receives requests from caches
– To handle processor reads & writes
– Unsolicited evictions

• May need to retrieve or invalidate remote copies
– Sends requests to copy holders
– Copy holders send replies

• Replies to requestor
• Send NACK if unable to satisfy request

Memory Controller

0 1 0 1 0 1 0 1shared

Status Copy HoldersBlock

24

0 1 0 0 0 0 0 0Exclusive25

0 0 0 0 0 0 0 0uncached26

Home Request

Network

Cache Request

Cache Reply

Home Reply



CS 740 F’97– 9 –

Home Handling of Processor Read
Uncached

Shared

Exclusive

p Requesting Processor
q Copy-holding Processor
r Competing Processor(s)

Read
Pending

READ(p,i)
DATA(p,i,d)
S += p

READ(p,i)
FETCH(q,i)

S Set of copy holders
+= Add to set
–= Remove from set

READ(p,i)
DATA(p,i,d)
S += p

WRITEHOLD(q,i,d)
DATA(p,i,d)
S += p

WRITEBACK(q,i,d)
DATA(p,i,d)
S += p
S –= q

READ(r,i)
NACK(r,i)

XREAD(r,i)
NACK(r,i)

Unsolicited
eviction



CS 740 F’97– 10 –

Cache Handling of Processor Write

Invalid

Shared

Exclusive

i Requested Block
t Current Block

Write
Pending

Write Miss
RELEASE(p,t)

Write Miss
WRITEBACK(p,t,d)

Write Hit

Write Miss
XREAD(p,i)

DATA(p,i,d)

NACK(p,i)



CS 740 F’97– 11 –

Home Handling of Processor Write

Shared
Exclusive

Clean
Write

Pending
XREAD(p,i)
DATA(p,i,d)
S += p

p Requesting Processor
q Copy-holding Processor(s)
r Competing Processor(s)

S Set of copy holders
+= Add to set
–= Remove from set

Uncached

Dirty
Write

Pending

XREAD(p,i)
Forall q in S:

INVALIDATE(q,i)

RELEASE(q,i)
S –= q

S nonempty

S empty
DATA(p,i,d)
S += p

XREAD(p,i)
XFETCH(q,i)

WRITEBACK(q,i,d)
DATA(p,i,d)
S –= q
S += p

READ(r,i)
NACK(r,i)

XREAD(r,i)
NACK(r,i)

READ(r,i)
NACK(r,i)
XREAD(r,i)
NACK(r,i)



CS 740 F’97– 12 –

Network Monitoring by Cache

• Cache receives commands from network
– Unlike snooping, only get messages regarding 

currently-held blocks

• Possible actions
– Invalidate entry and release copy
– Allow sharing of exclusively-held block
– Surrender copy of block

Processor

Cache

clean t

Status Tag Data

Cache Reply

Home Request

Network



CS 740 F’97– 13 –

Cache Handling of Network Commands

Invalid Shared

Exclusive

t Current Block

INVALIDATE(p,t)
RELEASE(p,t)

FETCH(p,t)
WRITEHOLD(p,t,d)

XFETCH(p,t)
WRITEBACK(p,t,d)

INVALIDATE(p,t)
XFETCH(p,t)

Blocks that have already
been written back or released



CS 740 F’97– 14 –

Home Handling of
Unsolicited Evictions

Exclusive

RELEASE(q,i)
S –= q

WRITEBACK(q,i,d)
S –= q

q Copy-Holding Processor

S Set of copy holders
+= Add to set
–= Remove from set

Uncached Shared

S nonempty

S empty



CS 740 F’97– 15 –

Optimization 1:
Make Clean Copy Exclusive

Cache Request
GIVEME p, a Want exclusive version of currently-held block

Home Response
ACK p, a Permission granted
NACK p, a Cannot fulfill request

Motivation
• Avoids need to transmit data

– Minor consideration
• Potential for fast acknowledgement

– Next optimization
• Allows processor to detect whether any writes since last read

– If receive ACK
– To implement store-conditional



CS 740 F’97– 16 –

Cache Handling of Processor Write

Invalid

Shared

Exclusive

i Requested Block
t Current Block

Write
Pending

Write Miss
RELEASE(p,t)

Write Miss
WRITEBACK(p,t,d)

Write Hit

Write Miss
XREAD(p,i)

DATA(p,i,d)

NACK(p,i)

Giveme
Pending

Write Hit
GIVEME(p,i)

NACK(p,i)

ACK(p,i)



CS 740 F’97– 17 –

Home Handling of Processor Write

Shared
Exclusive

Clean
Write

Pending

p Requesting Processor
q Copy-holding Processor(s)
r Competing Processor(s)

S Set of copy holders
+= Add to set
–= Remove from set

XREAD(p,i)
Forall q in S:

INVALIDATE(q,i)

RELEASE(q,i)
S –= q

S nonempty

S empty
DATA(p,i,d)
S += p

(X)READ(r,i)
NACK(r,i)

GIVEME
Pending

RELEASE(q,i)
S –= q

|S| > 1

(X)READ(r,i)
NACK(r,i)
GIVEME(r,i)
NACK(r,i)

GIVEME(p,i)
Forall q in S–{p}:

INVALIDATE(q,i)|S| = 1
ACK(p,i)

GIVEME(r,i)
NACK(r,i)



CS 740 F’97– 18 –

Optimization 2:
Fast Acknowledgement

Idea
• Enable processor write before other copies invalidated
• Only works if home has valid copy

Motivation
• Reduces write latency

Risk
• Possible sequential inconsistency
• Other processors continue to read old data



CS 740 F’97– 19 –

Home Handling of Processor Write

Exclusive

Clean
Write

Pending
XREAD(p,i)
DATA(p,i,d)
S += p

p Requesting Processor
q Copy-holding Processor(s)
r Competing Processor(s)

S Set of copy holders
+= Add to set
–= Remove from set

Uncached

Dirty
Write

Pending

Forall q in S-{p}:
INVALIDATE(q,i)

RELEASE(q,i)
S –= q

|S| > 1

|S|=1

XREAD(p,i)
XFETCH(q,i)

WRITEBACK(q,i,d)
DATA(p,i,d)
S –= q
S += p

READ(r,i)
NACK(r,i)

XREAD(r,i)
NACK(r,i)

(X)READ(r,i)
NACK(r,i)
GIVEME(r,i)
NACK(r,i)

Shared

GIVEME(p,i)
    ACK(p,i)

XREAD(p,i)
DATA(p,i,d)

S += p



CS 740 F’97– 20 –

Optimization 3:
Data Forwarding

Idea
• Copy holding processor sends data directly to requestor
• Also sends message to home

Motivation
• Reduce latency

Challenges
• New possibilities for deadlock & inconsistency
• Protocol extension left as exercise



CS 740 F’97– 21 –

Deadlock Principles
Conditions for Deadlock

• Finite resources
– Network links
– Buffers

• Circular dependence
– Independent agents A, B, …
– Require same resources

– Acquire in different order

Avoidance
• Provide independent resources
• Acquire in same order
• Preemption

– Force agent to give up already-acquired resource

A
Acquire X

Acquire Y

B
Acquire Y

Acquire X

Deadlocked



CS 740 F’97– 22 –

Resources for Memory Transaction

Sources of Resource Contention
• Processor / memory system

– Resolve by stalling processor
– Processor cannot hold onto memory resources

• Handling single memory transaction
– Real possibility

• Handling multiple memory transactions by single processor
– Generally serialize if cannot guarantee success

• Handling multiple memory transactions by independent processors
– Real possibility

Cache Home RemoteProc.

1: P Req 2: C Req

5: H Rep6: C Ack

3: H Req

4: R Rep



CS 740 F’97– 23 –

Protocol Deadlock Avoidance

Request-Reply Dependencies
• Provide separate routing resources for request & reply messages

– Physically distinct or separate virtual channels
• Require buffer for reply to be allocated before make request

– Stall processor if buffers not available at cache

Contentions Eliminated
• Between any request & any reply
• Between any two replies

– Resources allocated at receiver beforehand
– Processing of reply at receiver serves only to release resources

Cache Home RemoteProc.

1: P Req 2: C Req

5: H Rep6: C Ack

3: H Req

4: R Rep



CS 740 F’97– 24 –

Out of Order Message Delivery
Assumed FIFO Ordering Between Sender & Receiver

• Cannot guarantee between separate request & reply networks
– Attempting to reorder at receiver could lead to deadlock

Example Problem
• Cache sends READ request
• Home sends DATA reply

– Reply network
• Home sends INVALIDATE request due to some other transaction

– Request network
• Messages received at cache out-of-order

– Get INVALIDATE while in Pending Read state
• Handling

– Respond with RELEASE

– Wait for & discard DATA
– Retry

Other Problems Still Exist!



CS 740 F’97– 25 –

Protocol Deadlock Avoidance (Cont.)

Request-Request Dependencies
• Request by cache can generate request(s) by home

– May not have sufficient buffer resources
– May cause network contention

• Home can reply with NACK if cannot guarantee resource availability
– Processor will stall while cache retries

• Timeout
– Home can give up on pending operation
– Release resources
– Respond to requestor with NACK

Cache Home RemoteProc.

1: P Req 2: C Req

5: H Rep6: C Ack

3: H Req

4: R Rep



CS 740 F’97– 26 –

Fairness / Livelock
Livelock Possibilities

• Cache will keep getting NACK’ed
• Processor will be unable to complete read or write operation

Is This a Problem?
• Don’t know of protocol that guarantees fairness
• Even if single memory operation guaranteed to complete, hard to 

guarantee fairness of synchronization protocol

Avoidance
• Each memory transaction has priority
• Dynamically increase as get NACK’ed
• Preempt lower priority transactions



CS 740 F’97– 27 –

SGI Origin System
Similar to Example Protocol

• Both derivatives of Stanford DASH protocol

Enhanced Implementation Features
• Designed to handle out-of-order messages at all levels

– Important adaptive routing
• Support “clean exclusive” state

– Give to read request when block unshared
– Expedites subsequent write

• Forwarding of data from remote copy holder
– Also in DASH

• Evictions of clean blocks don’t generate network traffic
• More effective handling of request-request deadlock avoidance

– Send back information needed for requesting cache to handle 
invalidations

• Variable granularity directory representation
– 64-bit vector represents either 64 clustered processors or 64 processor 

sets



CS 740 F’97– 28 –

SGI Origin Performance
Processor

• 195 MHz R10000

Latencies
Level Nanoseconds Clock Cycles

• L1 cache 5 1
• L2 cache 56 11
• Local memory 310 60
• 4P avg. remote memory 540 105
• 128P avg. remote memory 945 184

Dealing with High Latency
• Support prefetch operations
• Automatic page migration in virtual memory system


