Shared Memory Systems
Part Il

Randal E. Bryant
CS 740
Dec. 3, 1997

Topics
* Fixing network-based coherency protocol
 Adding features
« Buffering & resource considerations

« Comparison to “real” protocols
— SGI Origin

Network-Based Cache Coherency

Home-Based Protocol
e Each block has “home”

—Memory controller
tracking its status Block Status Copy Holders

e physical 24| sharea |[o[t]o[]o[1]o[x

« Home maintains 25 IEchusive o|1|o|o|o|o|o|o
—Block status
— Identity of copy holders

1 bit flag / processor
g J'p Block Status Values
—Only need entry when

block has remote copy Shared
— 1 or more remote, read-only copies

e Exclusive

— Single, writeable copy in remote
cache

 Uncached
— No remote copies

Memory Controller 4

26 |uncached|[ofo]o]o]o]o]o]o

Implementation Detalls

« p Processor identifier
e a Block address
 d Block data

Messages from Cache to Block Home

 Cache requests

Type Contents Purpose

READ p,a Processor p wants to read a

XREAD p, a Processor p wants to write a
 Cache replies

Type Contents Purpose

WRITEBACK p,a,d Proc. p flushes exclusive block

WRITEHOLD p,a,d Proc. p shares exclusive block

RELEASE P, a Proc. p flushes clean block

—Treat evictions as unsolicited replies

Implementation Details (Cont.)

« p Processor identifier
e a Block address
 d Block data

Messages from Block Home to Cache

* Home requests

Type Contents Purpose

INVALIDATE p, a Give up clean copy

FETCH P, a Get readable copy from remote

XFETCH P, a Get writeable copy from remote
« Home replies

Type Contents Purpose

DATA p,a,d Reply to read / write request

NACK P, a Cannot fulfill request

Tricky Issues

Independent Actions between Cache & Home
« Cache evicts exclusive block while home in process of fetching
—Home will get WRITEBACK when expecting WRITEHOLD
— Cache will receive FETCH for invalid block
« Cache evicts exclusive block while home in process of xfetching
—Home will receive WRITEBACK generated by cache
— Cache will receive XFETCH for invalid block

Independent Actions between Two Processor Caches

 Processor r attempts read or write while home handling read or write
request by processor p

—Home sends NACK to processor r

—Processor r retries read or write operation
» Potential for livelock

—Processor r keeps getting NACK’ed

Performing Processor Operations

* Processor requests cache to perform load or store
— On word in cache block i
« Cache line currently holds block t
— May or may not have i =t
« Cache can either:
— Perform operation using local copy
— Issue request message to network (italicized)
» Wait for reply (bold)
» Stall until completed

Cache

Block =i T D
| ock =i Status Tag Data Cache Request

Data
H

Read / Write
-

o
Processor

-

<Done / Stall Home Reply

—6— CS 740 F'97

Cache Handling of Processor Read

Read
Pending

Read Miss
RELEASE(p,t)

Read Miss

1,d
READ(p.) DATA(p,i,d)

Read Miss

WRITEBACK(p,t,d) Read Hit

Exclusive

| Requested Block Read Hit

t Current Block

-7 - CS 740 F'97

Processing by Home

Home Memory Controller
* Receives requests from caches
—To handle processor reads & writes

— Unsolicited evictions

 May need to retrieve or invalidate remote copies
— Sends requests to copy holders

— Copy holders send replies

* Replies to requestor

 Send NACK if unable to satisfy request

Cache Request

-

-
Home Request

Cache Reply

Home Reply
-t

-

Block

Memory Controller

Status Copy Holders

24 I shared

o[1]o]z]ofz]o]2

25 IEchusive

o|1]ofo]ofo]ofo

26|uncached

ofo]ofo]ofo]ofo

CS 740 F'97

Home Handling of Processor Read

Gncachea

READ(r,1) READ(p,i)
NACK(r,i) WRITEHOLD(q,i,d) DATA(p,i,d)
DATA(p,i,d) S+=p
XREAD(ri) Read }—=—=P
NACK(r,1) Pending _‘ C
WRITEBACK(q,i,d)
DATA(p,i,d)
S+=p READ(p,i)
READ(p,i) S—=q DATA(p,i,d)
FETCH(q,i) S+=p
Unsolicited
eviction
p Requesting Processor S Set of copy holders
g Copy-holding Processor += Add to set

r Competing Processor(s) —= Remove from set

Cache Handling of Processor Write

Write Miss
RELEASE(p,t)

Write
Pending

Write Miss
XREAD(p,i)

Write Miss _
WRITEBACK(p,t,d) DATA(p.i,d)

Exclusive

| Requested Block Write Hit

t Current Block

Home Handling of Processor Write

. READ(,i)
RELEASE(q,i) NACK(r D)
S —-= ’
Uncached q XREAD(r.i)
NACK(r,i)
XREAD(p,i) S nonempty
DATA(p,i,d) S empty XREAD(p,i)
S+=p DATA(p,i,d) Forall qin S:

S+=p

INVALIDATE(q,i)
> 0
Exclusive
WRITEBACK(q,i,d)

DATA(p,i,d) S Set of copy holders
S—=q += Add to set

XREAD(p,i)
XFETCH(q,i)

Dirty \S+=p —= Remove from set
READ(,) Write
NACK(r’,i) Pending p Requesting Processor
XREAD(r,i) g Copy-holding Processor(s)

NACK(r,i) r Competing Processor(s)

Network Monitoring by Cache

e Cachereceives commands from network

— Unlike snooping, only get messages regarding
currently-held blocks

» Possible actions
— Invalidate entry and release copy
— Allow sharing of exclusively-held block
— Surrender copy of block

Cache
Status Tag Data
I—> Home Request
-t
Processor Cache Reply
- -
-t

-12 - CS 740 F'97

Cache Handling of Network Commands

Blocks that have already
been written back or released

INVALIDATE(p,t) -
XFETCH(p,t)

INVALIDATE(p,t)
RELEASE(p,t) @
> 9

XFETCH(p,t) FETCH(p,t)
WRITEBACK(p,t,d) WRITEHOLD(p,t,d)

Exclusive

t Current Block

Home Handling of
Unsolicited Evictions

RELEASE(q,i)

S—=¢
S empty
Gncachea
S nonempty

WRITEBACK(q,i,d)

S—=¢
S Set of copy holders
+= Add to set
—= Remove from set

g Copy-Holding Processor

Optimization 1:
Make Clean Copy Exclusive

Cache Request

GIVEME p,a Want exclusive version of currently-held block
Home Response

ACK P, a Permission granted

NACK P, a Cannot fulfill request
Motivation

* Avoids need to transmit data
—Minor consideration
* Potential for fast acknowledgement
— Next optimization
* Allows processor to detect whether any writes since last read
—If receive ACK
—To implement store-conditional

Cache Handling of Processor Write

Write Miss
RELEASE(p,t)

NACK(p,i)

Giveme
Pending

ACK(p,i)

Write Hit
NACK(p,i) GIVEME(p,i)

Write
Pending

Write Miss
XREAD(p,i)

Write Miss
WRITEBACK(p,t,d)

DATA(p,i,d)

Exclusive

| Requested Block Write Hit

t Current Block

—16 — CS 740 F'97

Home Handling of Processor Write

S Set of copy holders
+= Add to set
—= Remove from set

Exclusive

GIVEME(r,i)
NACK (r,i)
(X)READ(r,i)
NACK (r,i)

RELEASE(q,i)
S—=¢

S nonempty

S empty XREAD(p,i)

p Requesting Processor

g Copy-holding Processor(s)
r Competing Processor(s)

DATA(p,i,d) Forallgin S:
S+=p INVALIDATE(Q,I)
s
GIVEME(p,i)
Forall q in S—{p}-
IS[=1 INVALIDATE(q,i)

ACK (p,i)
(X)READ(r,i)
NACK(r,i)

RELEASE(Q,)
S—=¢q

17 —

GIVEME(r,)
NACK(r,i)

GIVEME
Pending
1IS| > 1
CS 740 F'97

Optimization 2:
Fast Acknowledgement

ldea
 Enable processor write before other copies invalidated
* Only works if home has valid copy
Motivation
 Reduces write latency
Risk
» Possible sequential inconsistency
e Other processors continue to read old data

Home Handling of Processor Write
(X)READ(r,i)
NACK(r,i)
GIVEME(r,i)
NACK(r,i)

RELEASE(q,i)
S—=¢

Uncached

XREAD(p,i)
DATA(p,i,d
(p.1.d) Forall g in S-{p}-

INVALIDATE(q,i)

S+=p
Exclusi XREAD(p,i) ARCGVEME(p.i)
xclusive DATA(o ACK()
- WRITEBACK(g,i,d S +=
XREAD(p,) DATAqnd)(q) p
XFETCH(q,i) o

Dirty
Write
Pending

S+=p

READ(r,1)
NACK(r,i) p Requesting Processor

XREAD(r,]) g Copy-holding Processor(s)
NACK(r,i) r Competing Processor(s)

S Set of copy holders
+= Add to set
—= Remove from set

Optimization 3:
Data Forwarding

Idea
 Copy holding processor sends data directly to requestor
» Also sends message to home

Motivation
 Reduce latency

Challenges

 New possibilities for deadlock & inconsistency
» Protocol extension left as exercise

Deadlock Principles

Conditions for Deadlock
 Finite resources
—Network links

— Buffers A - B -

_ Acquire X Acquire Y
o Circular dependence

—Independent agents A, B, ... Acquire Y Acquire X

—Require same resources

— Acquire in different order

Avoidance Deadlocked

 Provide independent resources
« Acquire in same order
 Preemption
— Force agent to give up already-acquired resource

Resources for Memory Transaction

1: P Req 2: C Req 3: H Req
—— — —

Proc. Cache Home Remote
6. C Ack 5: HRep 4: R Rep

Sources of Resource Contention

 Processor / memory system
— Resolve by stalling processor
— Processor cannot hold onto memory resources

 Handling single memory transaction
—Real possibility

 Handling multiple memory transactions by single processor
— Generally serialize if cannot guarantee success

 Handling multiple memory transactions by independent processors
—Real possibility

Protocol Deadlock Avoidance

1: P Req 2: C Req 3: H Req
—— — —

Proc. Cache Home Remote
6. C Ack 5: HRep 4: R Rep

Request-Reply Dependencies
* Provide separate routing resources for request & reply messages
—Physically distinct or separate virtual channels
 Require buffer for reply to be allocated before make request
— Stall processor if buffers not available at cache

Contentions Eliminated
 Between any request & any reply
 Between any two replies
— Resources allocated at receiver beforehand
—Processing of reply at receiver serves only to release resources

Out of Order Message Delivery

Assumed FIFO Ordering Between Sender & Receiver
« Cannot guarantee between separate request & reply networks
— Attempting to reorder at receiver could lead to deadlock

Example Problem

» Cache sends READ request
Home sends DATA reply
— Reply network
Home sends INVALIDATE request due to some other transaction
— Request network
Messages received at cache out-of-order
— Get INVALIDATE while in Pending Read state
Handling
—Respond with RELEASE
—Wait for & discard DATA
—Retry

Other Problems Still Exist!

Protocol Deadlock Avoidance (Cont.)

1: P Req 2: C Req 3: H Req
—— — —

Proc. Cache Home Remote
6. C Ack 5: HRep 4: R Rep

Request-Request Dependencies

 Request by cache can generate request(s) by home
—May not have sufficient buffer resources
—May cause network contention

« Home can reply with NACK if cannot guarantee resource availability
—Processor will stall while cache retries

 Timeout
—Home can give up on pending operation
—Release resources
—Respond to requestor with NACK

Fairness / Livelock

Livelock Possibilities
« Cache will keep getting NACK’ed
 Processor will be unable to complete read or write operation

Is This a Problem?

 Don’t know of protocol that guarantees fairness
 Even if single memory operation guaranteed to complete, hard to
guarantee fairness of synchronization protocol

Avoidance
« Each memory transaction has priority
 Dynamically increase as get NACK’ed
 Preempt lower priority transactions

SGI Origin System

Similar to Example Protocol
 Both derivatives of Stanford DASH protocol

Enhanced Implementation Features

 Designed to handle out-of-order messages at all levels
— Important adaptive routing
Support “clean exclusive” state
— Give to read request when block unshared
— Expedites subsequent write
Forwarding of data from remote copy holder
—Also in DASH
Evictions of clean blocks don’t generate network traffic
More effective handling of request-request deadlock avoidance

— Send back information needed for requesting cache to handle
invalidations

Variable granularity directory representation

— 64-bit vector represents either 64 clustered processors or 64 processor
sets

SGI Origin Performance

Processor
e 195 MHz R10000

Latencies
Level Nanoseconds Clock Cycles
L1 cache 5 1
« L2 cache 56 11
 Local memory 310 60
4P avg. remote memory 540 105
e 128P avg. remote memory 945 184

Dealing with High Latency

e Support prefetch operations
« Automatic page migration in virtual memory system

